
Journal of Computational Physics 507 (2024) 112957

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

A geometrically and thermodynamically compatible finite volume 

scheme for continuum mechanics on unstructured polygonal 
meshes

Walter Boscheri a,b,∗, Raphaël Loubère c, Jean-Philippe Braeunig d, 
Pierre-Henri Maire d

a Laboratoire de Mathématiques UMR 5127 CNRS, Université Savoie Mont Blanc, 73376 Le Bourget du Lac, France
b Department of Mathematics and Computer Science, University of Ferrara, 44121 Ferrara, Italy
c Institut de Mathématiques de Bordeaux (IMB), Université de Bordeaux, CNRS, Bordeaux INP, 33400 Talence, France
d CEA CESTA, 33116 Le Barp, France

A R T I C L E I N F O A B S T R A C T

Keywords:

Exact preservation of determinant constraint
Thermodynamically compatible finite volume 
schemes
Entropy preserving
Entropy stability
Unstructured mesh
Continuum mechanics

We present a novel Finite Volume (FV) scheme on unstructured polygonal meshes that is provably 
compliant with the Second Law of Thermodynamics and the Geometric Conservation Law (GCL) 
at the same time. The governing equations are provided by a subset of the class of symmetric 
and hyperbolic thermodynamically compatible (SHTC) models introduced by Godunov in 1961. 
Specifically, our numerical method discretizes the equations for the conservation of momentum, 
total energy, distortion tensor and thermal impulse vector, hence accounting in one single unified 
mathematical formalism for a wide range of physical phenomena in continuum mechanics, 
spanning from ideal and viscous fluids to hyperelastic solids. By means of two conservative 
corrections directly embedded in the definition of the numerical fluxes, the new schemes are 
proven to satisfy two extra conservation laws, namely an entropy balance law and a geometric 
equation that links the distortion tensor to the density evolution. As such, the classical mass 
conservation equation can be discarded. Firstly, the GCL is derived at the continuous level, and 
subsequently it is satisfied by introducing the new concepts of general potential and generalized 
Gibbs relation. The new potential is nothing but the determinant of the distortion tensor, and 
the associated Gibbs relation is derived by introducing a set of dual or thermodynamic variables 
such that the GCL is retrieved by dot multiplying the original system with the new dual variables. 
Once compatibility of the GCL is ensured, thermodynamic compatibility is tackled in the same 
manner, thus achieving the satisfaction of a local cell entropy inequality. The two corrections 
are orthogonal, meaning that they can coexist simultaneously without interfering with each 
other. The compatibility of the new FV schemes holds true at the semi-discrete level, and time 
integration of the governing PDE is carried out relying on Runge-Kutta schemes. A large suite of 
test cases demonstrates the structure preserving properties of the schemes at the discrete level as 
well.
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1. Introduction

Born in 1929, Godunov embarked on a remarkable career that spanned several decades until his death in July 2023. He made 
profound contributions to the development of numerical techniques for solving Partial Differential Equations (PDEs), particularly 
in the field of fluid dynamics. The celebrated Godunov theorem and Godunov scheme revolutionized Computational Fluid Dynam-
ics (CFD), enabling scientists and engineers to simulate complex fluid flows. However, Godunov research developed beyond fluid 
dynamics, and in [29] he found a connection between symmetric hyperbolicity in the sense of Friedrichs [25] and thermodynamic 
compatibility. In this work of Godunov, one learns that for hyperbolic systems having an underlying variational formulation, the total 
energy conservation law can be derived as the dot product of the other equations with the so-called thermodynamic dual variables

that are given by the partial derivative of the total energy potential with respect to the conservative variables of the system. These 
variables are also known as main field, or even Godunov variables, see for instance [24]. Later on, Godunov and Romenski [53,33]
extended the theory of symmetric hyperbolic and thermodynamically compatible (SHTC) systems to a wide class of mathematical 
models: magnetohydrodynamics [30,31], nonlinear hyperelasticity [34], compressible multi-phase flows [52,50] as well as relativis-
tic fluid and solid mechanics [32,51]. Within this theory the total energy potential plays a crucial role which is coming from the 
variational principle from which the system is derived. Moreover, the entropy density equation is part of the master system, while 
the total energy conservation law is an extra conservation law, since it is obtained by a linear combination of the other conservation 
equations.

The SHTC models are therefore compliant with the Second Law of Thermodynamics by construction, and they are derived as 
first order hyperbolic systems, where the stress tensor is a function of the inverse deformation gradient 𝐀 rather than velocity 
gradients, even for fluids. Indeed, irreversible dissipative processes are accounted by the presence of source terms with one or 
more characteristic strain relaxation times 𝜏 . The hyperbolicity of SHTC models implies finite wave speeds for all involved physical 
processes, even dissipative ones, thus making their mathematical structure substantially different from those PDE systems which 
admit parabolic dissipation and diffusion terms. Indeed, in [49], heat conduction is derived in first order hyperbolic form proving 
consistency with the Fourier law in the asymptotic regime [20]. Likewise, the stress tensor in the SHTC model proposed in [49] is 
asymptotically consistent with the Navier-Stokes model. The distortion tensor is defined as the inverse of the deformation gradient, 
hence it is defined by construction as the inverse of the Jacobian matrix associated to the Lagrange-Euler mapping between the 
Lagrangian (or material) to the Eulerian (or updated) configuration. Consequently, the distortion tensor accounts for the deformation 
and rotation of the matter subject to mechanical and thermal loads. A direct link exists between the scalar density and the distortion 
tensor at the continuous level, which is also known as Geometric Conservation Law (GCL) in the Lagrangian formulation of the 
governing equations [19,43]. As a consequence, the density equation in the original model is redundant at the continuous level [48]. 
This can be viewed as an internal consistency constraint. However, ensuring this compatibility at the discrete level is not obvious, 
and this is one goal of this work.

As already mentioned, in the SHTC formalism the total energy equation plays the role of an extra conservation law that can 
be deduced from the other equations of the system at the continuous level. This means that the entropy balance law is part of the 
master system, and it becomes an equality in the absence of shock waves. Nevertheless, at the discrete level, the energy equation 
is typically solved, hence ensuring energy conservation and numerical stability in the energy norm, and a lot of research has been 
conducted in order to achieve thermodynamic compatibility, i.e. obtaining an entropy balance law as a consequence of the chosen 
discretization. This research line started from the pioneering work presented in [55], with the aim of devising provably entropy 
preserving and entropy stable numerical schemes that has been further investigated in [35,28,39,42,41,6,38,40]. Other important 
contributions to the design and implementation of entropy preserving and stable schemes can be found for instance in [23,17,36,
18,27,22] and references therein. The numerical strategy proposed in [1,3] has been recently employed to construct a new family 
of thermodynamically compatible schemes in which the entropy inequality is solved instead of the energy [14,15,2,13,56], hence 
strictly mimicking the SHTC framework at the discrete level. The numerical methods are provably energy preserving at the semi-
discrete level thanks to a scalar correction factor that is directly embedded in the definition of the numerical fluxes, hence ensuring 
conservation. In Lagrangian hydrodynamics, thermodynamically compatible schemes have been developed in order to obtain the total 
energy conservation and the satisfaction of an entropy inequality as a consequence of a compatible discretization of the equations 
of continuity, momentum and internal energy, see for instance [16,4,44]. A recent attempt in directly solving the entropy inequality 
and obtaining conservation and stability in the energy has been forwarded in [10].

In this work, we make use of the general framework introduced in [1] for the construction of thermodynamically compatible 
schemes. We choose to discretize the total energy conservation law and deduce the entropy equation as a consequence, hence 
implying that the entropy inequality is one extra equation satisfied by the mathematical model, which must also be fulfilled at discrete 
level. This choice is the classical one because it is simpler to monitor energy or temperature in experimental devices compared to 
measuring entropy variations. From the continuous point of view, choosing the total energy equation or the entropy one is totally 
equivalent. Furthermore, the numerical scheme must feature a discrete compatibility with the entropy inequality, and a discrete 
internal consistency between the determinant of the inverse of the deformation gradient and the discrete mass equation. We propose 
to resort to the approach originally forwarded in [1], and subsequently used in [2] for achieving thermodynamic compatibility for 
the SHTC model presented in [49]. Our novel idea is to define a new geometrical potential that plays the role of total energy in SHTC 
schemes, and consequently to derive the associated dual variables. In this way, another extra conservation law can be obtained which 
accounts for the geometric consistency, that is nothing but the Geometric Conservation Law written in the Eulerian framework. Up 
to the knowledge of the authors, no geometrically compatible schemes on fixed unstructured meshes are part of the state-of-the-art 
2

numerical schemes for continuum mechanics. In this work we will design a first order Finite Volume (FV) scheme on unstructured 
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two-dimensional polygonal grids that is compatible with the Second Law of Thermodynamics and with the GCL at the semi-discrete 
level, meaning that two extra conservation laws are satisfied by the scheme at the same time. This will ultimately allow to discard 
the classical mass conservation equation since the density can be deduced by the geometric compatibility achieved by the numerical 
method.

The paper is organized in three main sections. In Section 2 we introduce the governing equations, the extra conservation laws and 
the final reduced compatible continuous model that is derived. Section 3 is devoted to the design of the numerical scheme, including 
two theorems that demonstrate the compatibility of the new methods at the semi-discrete level. Appendix A contains all the details 
related to the compatibility of the reduced model with the geometric constraint in the framework of SHTC systems. The numerical 
experiments are gathered in the dedicated Section 4, where we numerically verify that the structural properties of the continuous 
model are preserved at the discrete level. Finally, we draw some conclusions and an outlook to future developments in Section 5.

2. Mathematical model

2.1. Governing equations

The governing equations are given by the unified first order hyperbolic model of continuum mechanics proposed in [49] that 
belongs to the class of hyperbolic thermodynamically compatible (HTC) systems [29,34,53,33]. Let us assume Einstein summation 
convention over repeated indices, and let us adopt bold symbols to label vectors and matrices. Following [2], the mathematical 
model is written in three space dimensions with indices 1 ≤ 𝑖, 𝑘, 𝑚 ≤ 3 as follows:

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑣𝑘)
𝜕𝑥𝑘

− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝜌

𝜕𝑥𝑚

)
= 0, (1a)

𝜕𝜌𝑣𝑖
𝜕𝑡

+
𝜕
(
𝜌𝑣𝑖𝑣𝑘 + 𝑝𝛿𝑖𝑘 + 𝜎𝑖𝑘 + 𝜙𝑖𝑘

)
𝜕𝑥𝑘

− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝜌𝑣𝑖
𝜕𝑥𝑚

)
= 0, (1b)

𝜕S

𝜕𝑡
+
𝜕
(
S𝑣𝑘 + 𝛽𝑘

)
𝜕𝑥𝑘

− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕S

𝜕𝑥𝑚

)
=Π+

𝛼𝑖𝑘𝛼𝑖𝑘
𝜃1(𝜏1)𝑇

+
𝛽𝑖𝛽𝑖

𝜃2(𝜏2)𝑇
≥ 0, (1c)

𝜕𝐴𝑖𝑘

𝜕𝑡
+
𝜕(𝐴𝑖𝑚𝑣𝑚)
𝜕𝑥𝑘

+ 𝑣𝑚

(
𝜕𝐴𝑖𝑘

𝜕𝑥𝑚
−
𝜕𝐴𝑖𝑚

𝜕𝑥𝑘

)
− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝐴𝑖𝑘

𝜕𝑥𝑚

)
= −

𝛼𝑖𝑘
𝜃1(𝜏1)

, (1d)

𝜕𝐽𝑘
𝜕𝑡

+
𝜕
(
𝐽𝑚𝑣𝑚 + 𝑇

)
𝜕𝑥𝑘

+ 𝑣𝑚

(
𝜕𝐽𝑘
𝜕𝑥𝑚

−
𝜕𝐽𝑚
𝜕𝑥𝑘

)
− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝐽𝑘
𝜕𝑥𝑚

)
= −

𝛽𝑘
𝜃2(𝜏2)

, (1e)

with 𝑡 ∈ R0
+ being the time and 𝐱 = {𝑥𝑘} denoting the spatial position vector. The state vector 𝐪 = {𝑞𝑗} = (𝜌, 𝜌𝑣𝑖, S, 𝐴𝑖𝑘, 𝐽𝑘)⊤ is 

composed of mass density 𝜌 > 0, momentum 𝜌𝐯 = {𝜌𝑣𝑖}, total entropy S, distortion tensor 𝐀 = {𝐴𝑖𝑘} and thermal impulse 𝐉 = {𝐽𝑘}. 
Furthermore, 𝑝 > 0 and 𝑇 > 0 denote the fluid pressure and temperature, respectively. The fluid is also characterized by a polytropic 
index 𝛾 = 𝑐𝑝∕𝑐𝑣, given as the ratio of specific heats at constant pressure and volume, namely 𝑐𝑝 and 𝑐𝑣, respectively. Since we aim 
at solving numerically these governing equations, a diagonal viscosity matrix with parameter 𝜖 > 0 is artificially added to the model 
derived in [49], which can however be retrieved for 𝜖 = 0. In fact, the above system also accounts for parabolic vanishing viscosity 
terms, that yield a production contribution Π in the entropy equation (1c) which, according to [15], writes

Π= 𝜖

𝑇
(𝜕𝑥𝑚𝑞𝑖) (𝜕

2
𝑞𝑖𝑞𝑗

E) (𝜕𝑥𝑚𝑞𝑗 ) ≥ 0. (2)

The positivity of the production term is ensured by assuming a convex total energy potential implying that the Hessian of the total 
energy potential is at least positive semi-definite, i.e. 𝜕2𝑞𝑖𝑞𝑗 E ≥ 0, therefore the physical entropy is increasing, in accordance with the 
Second Law of Thermodynamics. Here, E = E1 + E2 + E3 + E4 is the total energy of the system which is obtained as the sum of four 
terms [48]:

E1 =
𝜌𝛾

𝛾 − 1
𝑒𝑆∕𝑐𝑣 , E2 =

1
2
𝜌𝑣𝑖𝑣𝑖, E3 =

1
4
𝜌𝑐2𝑠 �̊�𝑖𝑗 �̊�𝑖𝑗 , E4 =

1
2
𝑐2
ℎ
𝜌𝐽𝑖𝐽𝑖, (3)

where 𝐆 = {𝐺𝑖𝑘} ∶= {𝐴𝑖𝑗𝐴𝑘𝑗} represents the metric tensor and �̊� = {�̊�𝑖𝑘} = {𝐺𝑖𝑘 −
1
3 𝐺𝑚𝑚𝛿𝑖𝑘} denotes its trace-free part with 𝛿𝑖𝑘

being the Kronecker delta. The first term E1 corresponds to the internal energy, for which we assume the ideal gas equation of state, 
then the kinetic energy is considered by E2, whereas E3 is the shear energy with the shear sound speed 𝑐𝑠, and the last term E4 takes 
into account the thermal energy with 𝑐ℎ being the heat wave speed. Let us now introduce the set of thermodynamic dual variables 
𝐩 ∶= 𝜕𝐪E = {𝑝𝑗} =

(
𝑟, 𝑣𝑖, 𝑇 , 𝛼𝑖𝑘, 𝛽𝑘

)𝑇
which are explicitly given by the derivative of the energy potential (3) with respect to the state 

vector 𝐪, that is

𝑟 = 𝜕𝜌E, 𝑣𝑖 = 𝜕𝜌𝑣𝑖E, 𝑇 = 𝜕SE, 𝛼𝑖𝑘 = 𝜕𝐴𝑖𝑘E, 𝛽𝑘 = 𝜕𝐽𝑘E. (4)

In the momentum equation (1b), the shear stress tensor 𝝈 = {𝜎𝑖𝑘} and the thermal stress tensor 𝝓 = {𝜙𝑖𝑘} are defined in terms of the 
dual variables 𝛼𝑖𝑘 and 𝛽𝑘 as
3

𝜎𝑖𝑘 =𝐴𝑗𝑖𝜕𝐴𝑗𝑘E =𝐴𝑗𝑖𝛼𝑗𝑘 = 𝜌𝑐2𝑠𝐺𝑖𝑗�̊�𝑗𝑘, 𝜙𝑖𝑘 = 𝐽𝑖𝜕𝐽𝑘E = 𝐽𝑖𝛽𝑘 = 𝜌𝑐2ℎ𝐽𝑖𝐽𝑘. (5)



Journal of Computational Physics 507 (2024) 112957W. Boscheri, R. Loubère, J.-P. Braeunig et al.

The work of the shear and thermal stress tensors 𝜒𝑘 as well as the heat flux ℎ𝑘 are given by

𝜒𝑘 = 𝜕𝜌𝑣𝑖E
(
𝐴𝑗𝑖𝜕𝐴𝑗𝑘E + 𝐽𝑖𝜕𝐽𝑘E

)
= 𝑣𝑖 (𝜎𝑖𝑘 + 𝜙𝑖𝑘), ℎ𝑘 = 𝜕SE 𝜕𝐽𝑘E = 𝑇 𝛽𝑘 = 𝜌𝑐2ℎ𝑇 𝐽𝑘, (6)

Finally, the mathematical model (1) is also endowed with algebraic source terms which contain two positive functions 𝜃1(𝜏1) > 0
and 𝜃2(𝜏2) > 0 that depend on 𝐪 and on the relaxation times 𝜏1 > 0 and 𝜏2 > 0 as follows:

𝜃1 =
1
3
𝜌𝑧1𝜏1 𝑐

2
𝑠 |𝐀|− 5

3 , 𝜃2 = 𝜌𝑧2𝜏2 𝑐
2
ℎ
, 𝑧1 =

𝜌0
𝜌
, 𝑧2 =

𝜌0𝑇0
𝜌𝑇

, (7)

with 𝜌0 and 𝑇0 being a reference density and a reference temperature, respectively, and |𝐀| denoting the determinant of 𝐀. The 
asymptotic limit of the model (1) has been analyzed in [21] at the continuous level and in [7] in the fully discrete setting, showing 
that for small relaxation times, i.e. when 𝜏1 → 0 and 𝜏2 → 0, the Navier-Stokes-Fourier limit is obtained. Indeed, the stress tensor 𝜎𝑖𝑘
and the heat flux ℎ𝑘 tend to

𝜎𝑖𝑘 = −1
6
𝜌0𝑐

2
𝑠 𝜏1

(
𝜕𝑘𝑣𝑖 + 𝜕𝑖𝑣𝑘 −

2
3
(
𝜕𝑚𝑣𝑚

)
𝛿𝑖𝑘

)
, ℎ𝑘 = −𝜌0𝑇0𝑐2ℎ𝜏2𝜕𝑘𝑇 , (8)

with 𝜎𝑖𝑘 fulfilling Stokes hypothesis. In the asymptotic regime, the relaxation time 𝜏1 is directly related to the viscosity of the fluid 
by 𝜇 = 1

6𝜌0𝑐
2
𝑠 𝜏1. Analogously, there is a direct link between the relaxation time 𝜏2 and the thermal conductivity coefficient which is 

explicitly given by 𝜅 = 𝜌0𝑇0𝑐
2
ℎ
𝜏2.

The eigenstructure of the system (1) has not been studied yet. Here, we are only interested in an estimate of the maximum 
eigenvalues that can be heuristically chosen according to [7] as

𝜆 =
√

𝛾 𝑝

𝜌
+ 4

3
𝑐2𝑠 + 𝑐2

ℎ
. (9)

2.2. Overdetermined systems: extra conservation laws

By construction, see [49], the model (1) is an overdetermined hyperbolic system, thus implying the satisfaction of additional (or 
extra) conservation laws. Firstly, we obtain total energy conservation from the HTC framework, then we focus on the derivation of 
the Geometric Conservation Law that imposes a geometric constraint on the determinant of the distortion tensor |𝐀|.
2.2.1. Total energy conservation law

By dot multiplying equations (1a)-(1e) with the associated thermodynamic variables 𝐩, one obtains the total energy equation

𝜕E

𝜕𝑡
+
𝜕
(
E𝑣𝑘 + 𝑣𝑖 𝑝 𝛿𝑖𝑘 + 𝜒𝑘 + ℎ𝑘

)
𝜕𝑥𝑘

− 𝜕

𝜕𝑥𝑚

(
𝜖

E

𝜕𝑥𝑚

)
= 0, (10)

meaning that the following Gibbs relation is satisfied:

1 ⋅ 𝑑E = 𝑟 ⋅𝑑𝜌 + 𝑣𝑖 ⋅𝑑(𝜌𝑣𝑖) + 𝑇 ⋅𝑑S + 𝛼𝑖𝑘 ⋅𝑑𝐴𝑖𝑘 + 𝛽𝑘 ⋅𝑑𝐽𝑘 ∶= 𝐩 ⋅𝑑𝐪
1 ⋅ (10) = 𝑟 ⋅(1a) + 𝑣𝑖 ⋅(1b) + 𝑇 ⋅(1c) + 𝛼𝑖𝑘 ⋅(1d) + 𝛽𝑘 ⋅(1e)

. (11)

This also implies that the entropy production term Π in (1c) must be compatible with the parabolic dissipation terms

𝜕SE ⋅Π+ 𝐩 ⋅ 𝜕𝑚
(
𝜖𝜕𝑚𝐪

)
= 𝜕𝑚

(
𝜖𝜕𝑚E

)
, (12)

and that the dot product of 𝐩 with the algebraic relaxation source terms must vanish

𝐩 ⋅ 𝐒(𝐪) = 0. (13)

Although the rigorous formalism and derivation of HTC systems implies the use of the entropy as state variable, let us remark that 
the energy equation (10) could be solved instead, and the associated entropy balance can be retrieved again from the Gibbs relation 
(11) as

𝑇 𝑑S = −𝑟 ⋅ 𝑑𝜌− 𝑣𝑖 ⋅ 𝑑(𝜌𝑣𝑖) + 1 ⋅ 𝑑E − 𝛼𝑖𝑘 ⋅ 𝑑𝐴𝑖𝑘 − 𝛽𝑘 ⋅ 𝑑𝐽𝑘, (14)

with a set of dual variables

𝐫 = {𝑟𝑗} =
1
𝑇
(−𝑟,−𝑣𝑖,1,−𝛼𝑖𝑘,−𝛽𝑘)⊤. (15)

This implies the assumption of a physical entropy potential S such that 𝐫 = 𝜕𝐪S with an associated positive semi-negative Hessian 
matrix 𝜕2𝑞𝑖𝑞𝑗 S ≤ 0.

2.2.2. Geometric conservation law (GCL)

The governing equations (1) also involve a geometric constraint on the determinant of the distortion tensor 𝐀, which corresponds 
4

to the inverse deformation gradient for reversible processes in the material. To properly derive this geometric constraint, let us 
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Fig. 1. Sketch of the Lagrangian-Eulerian transformation.

consider the Lagrange-Euler mapping between the Lagrangian domain Ω ⊂ℝ3 and the Eulerian domain 𝜔(𝑡) ⊂ℝ3 at time 𝑡 > 0, that 
deforms in time through the movement of the material. At the aid of Fig. 1, let 𝐗 = {𝑋𝑘} and 𝐱 = {𝑥𝑘} represent the coordinate 
of any Lagrangian point in Ω and Eulerian point in 𝜔(𝑡), respectively. Then, the Lagrange-Euler mapping 𝚽 = {Φ𝑖} is such that 
𝐱 =𝚽(𝐗, 𝑡) ∈ 𝜔(𝑡), and the kinematic velocity of the material in the Eulerian frame is given by

𝑣𝑖(𝐗, 𝑡) =
𝜕Φ𝑖(𝐗, 𝑡)

𝜕𝑡
. (16)

The deformation gradient tensor 𝐅 = {𝐹𝑖𝑘} is nothing but the Jacobian matrix associated to the flow map Φ and verifies

𝐹𝑖𝑘 =
𝜕Φ𝑖

𝜕𝑋𝑘

. (17)

We assume that for all 𝑡 > 0, the determinant of 𝐅, called the Jacobian of the transformation, satisfies det(𝐅(𝐗, 𝑡)) ∶= |𝐅(𝐗, 𝑡)| > 0, 
so that the flow map is always invertible. The inverse of the transformation links the Eulerian coordinate to the Lagrangian one, i.e. 
𝐗 = Φ−1(𝐱, 𝑡), and the distortion tensor in the mathematical model (1) is geometrically defined as 𝐀 = 𝐅−1 for reversible processes. 
The determinant of the deformation gradient represents the ratio of the Eulerian volume element to the Lagrangian volume element, 
that is

𝑑𝑣 = |𝐅|𝑑𝑉 . (18)

Following [26], the mass conservation law with respect to the Lagrangian configuration is expressed for 𝑡 ≥ 0 by

𝑑

𝑑𝑡 ∫
Ω

𝜌(𝐗, 𝑡) |𝐅(𝐗, 𝑡)|𝑑𝑉 = 0, (19)

with the Lagrangian or material derivative given by

𝑑

𝑑𝑡
= 𝜕

𝜕𝑡
+ 𝑣𝑘

𝜕

𝜕𝑥𝑘
. (20)

Since relation (19) must hold for an arbitrary domain Ω, it implies

𝜌(𝐗, 𝑡)|𝐅(𝐗, 𝑡)| = 𝜌(𝐗,0) ⟹ |𝐅| = 𝜌0
𝜌
, (21)

where we recall that 𝜌0 = 𝜌(𝐗, 0) is the initial density of the material. Consequently, thanks to the relationship 𝐀 = 𝐅−1, the determi-
nant of the distortion matrix must obey the following constraint:

|𝐀| = 𝜌

𝜌0
. (22)

This geometric constraint is extremely difficult to be respected at the discrete level, especially for Eulerian schemes. To the best 
knowledge of the authors, this has never been achieved so far on fixed grids. Therefore, our aim is to satisfy the constraint (22)
by proposing a new approach, that requires the satisfaction of an extra conservation law for the quantity |𝐀|. This corresponds to 
the mass conservation equation as fully detailed in [34], and here we recall its derivation starting from the Lagrangian frame of 
reference. Using the Lagrangian derivative (20) and neglecting viscous and source terms, the evolution equation (1d) writes

𝑑𝐴𝑖𝑘

𝑑𝑡
+𝐴𝑖𝑚

𝜕𝑣𝑚
𝜕𝑥𝑘

= 0. (23)

Employing the Jacobi formula and the above relation, the time derivative of the determinant of the distortion tensor leads to

𝑑|𝐀|
𝑑𝑡

= tr
(|𝐀|𝐖 𝑑𝐀

𝑑𝑡

)
, 𝐖 =𝐀−1,

𝜕𝑣𝑚
5

= −|𝐀|𝑊𝑘𝑖 𝐴𝑖𝑚 𝜕𝑥𝑘
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= −|𝐀|𝛿𝑘𝑚 𝜕𝑣𝑚
𝜕𝑥𝑘

. (24)

By replacing the material derivative on the left hand side of (24) with its Eulerian counterpart according to (20), the Geometric 
Conservation Law is obtained as an extra conservation law satisfied by the governing equations (1), which is explicitly given by

𝜕|𝐀|
𝜕𝑡

+ 𝜕

𝜕𝑥𝑘
(|𝐀|𝑣𝑘) = 0. (25)

Therefore, satisfying the GCL (25) implies that the constraint (22) is also respected. To mimic the HTC approach, let us introduce 
a new set of pseudo-thermodynamic variables 𝐰 = {𝑤𝑖𝑘} that are dual with respect to a pseudo-potential given by |𝐀|, thus obtaining 
𝐰 ∶= 𝜕𝐀|𝐀|. Then, by construction, one can verify that a pseudo-Gibbs relation is satisfied, that is

𝑑(|𝐀|) =𝑤𝑖𝑘 ⋅𝑑(𝐴𝑖𝑘) ∶=𝐰 ⋅ 𝑑𝐀

(25) =𝑤𝑖𝑘 ⋅(1d)
. (26)

More precisely, the source term of the distortion tensor equation (1d), referred to as 𝐒𝐀, has been designed in [49] not to affect the 
mass conservation equation. Indeed, it is proportional to 𝜕𝐀E, namely

𝐒𝐀 = −
𝜕𝐀E

𝜃1(𝜏1)
= − 𝜶

𝜃1(𝜏1)
= − 3

𝜏1
|𝐀| 53 𝐀�̊�. (27)

On the other hand, the dual variables 𝐰 are given by

𝐰 = |𝐀|𝐀−⊤. (28)

Therefore, the contraction 𝐰 ∶ 𝐒𝐀 = tr(𝐰⊤ 𝐒𝐀) yields

𝐰 ∶ 𝐒𝐀 = − 3
𝜏1
|𝐀| 83 tr(𝐀−1𝐀�̊�) = − 3

𝜏1
|𝐀| 83 tr(�̊�) = 0, (29)

since �̊� is the trace-free part of the metric tensor 𝐆 = 𝐀⊤𝐀. The details concerning the derivation of the GCL in terms of the dual 
variables 𝐰 can be found in Appendix A.

2.3. Reduced compatible model

The previous considerations incline us to consider a reduced model consisting of the following equations:

𝜕𝜌𝑣𝑖
𝜕𝑡

+
𝜕
(
𝜌𝑣𝑖𝑣𝑘 + 𝑝𝛿𝑖𝑘 + 𝜎𝑖𝑘 + 𝜙𝑖𝑘

)
𝜕𝑥𝑘

− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝜌𝑣𝑖
𝜕𝑥𝑚

)
= 0, (30a)

𝜕E

𝜕𝑡
+
𝜕
(
E𝑣𝑘 + 𝑣𝑖 𝑝 𝛿𝑖𝑘 + 𝜒𝑘 + ℎ𝑘

)
𝜕𝑥𝑘

− 𝜕

𝜕𝑥𝑚

(
𝜖

E

𝜕𝑥𝑚

)
= 0, (30b)

𝜕𝐴𝑖𝑘

𝜕𝑡
+
𝜕(𝐴𝑖𝑚𝑣𝑚)
𝜕𝑥𝑘

+ 𝑣𝑚

(
𝜕𝐴𝑖𝑘

𝜕𝑥𝑚
−
𝜕𝐴𝑖𝑚

𝜕𝑥𝑘

)
− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝐴𝑖𝑘

𝜕𝑥𝑚

)
= −

𝛼𝑖𝑘
𝜃1(𝜏1)

, (30c)

𝜕𝐽𝑘
𝜕𝑡

+
𝜕
(
𝐽𝑚𝑣𝑚 + 𝑇

)
𝜕𝑥𝑘

+ 𝑣𝑚

(
𝜕𝐽𝑘
𝜕𝑥𝑚

−
𝜕𝐽𝑚
𝜕𝑥𝑘

)
− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝐽𝑘
𝜕𝑥𝑚

)
= −

𝛽𝑘
𝜃2(𝜏2)

. (30d)

This system satisfies the entropy inequality (1c) and the Geometric Conservation Law (25). We underline that no evolution equation 
for the mass density is embedded in the model, since the material density can be easily computed from the determinant constraint 
(22) thanks to the GCL compatibility, that is 𝜌 = 𝜌0|𝐀|. Likewise, the entropy balance is also satisfied by the reduced model (30)
which is compliant with the Gibbs relation (14).

Here we consider the state variables 𝐮 = (𝜌𝑣𝑖, E, 𝐴𝑖𝑘, 𝐽𝑘), and the governing equations can be written in a compact matrix-vector 
formulation as

𝜕𝐮
𝜕𝑡

+
𝜕𝐟𝑘(𝐮)
𝜕𝑥𝑘

+𝐁𝑘(𝐮)
𝜕𝐮
𝜕𝑥𝑘

− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝐮
𝜕𝑥𝑚

)
= 𝐒(𝐮), (31)

where 𝐟𝑘(𝐪) is the nonlinear flux tensor and 𝐁𝑘(𝐮)𝜕𝑘𝐮 contains the non-conservative part of the system in block-matrix notation for 
𝐀 and 𝐉. The algebraic sources are gathered in the term 𝐒(𝐮), while the regularizing viscous terms are given by 𝜕𝑚

(
𝜖𝜕𝑚𝐮

)
.

The model (30) is solved with a finite volume method on general unstructured meshes that is proven to preserve both the 
geometric and the thermodynamic compatibility. Indeed, the novel numerical method only solves the reduced model (30) because it 
6

is compliant with (1c) and (25). All the details of the numerical scheme are provided in the next section.
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Fig. 2. Left: example of unstructured Voronoi mesh. Right: notation used for cell 𝜔𝓁 and one direct neighbor cell 𝜔r .

3. Numerical scheme

3.1. Semi-discrete finite volume scheme on unstructured meshes

To ease the notation and the readability, subscripts are used for tensor indices while superscripts denote the spatial discretization 
index. The two-dimensional computational domain Ω ∈R2 is discretized with a total number 𝑁𝓁 of non-overlapping unstructured 
polygonal control volumes 𝜔𝓁 with border 𝜕𝜔𝓁 and barycenter coordinates 𝐱𝓁 . We underline that Voronoi meshes can also be 
employed as well as any other general polygonal elements. The only restriction is given by the assumption of conforming grids, 
meaning that each edge of the computational mesh, which does not lie on the physical boundary of the domain, must be shared by 
two and only two adjacent elements. The surface of the element is denoted with |𝜔𝓁 |, whereas |𝜕𝜔𝓁| refers to the cell perimeter. 
The set of neighbors of cell 𝜔𝓁 is labeled with N𝓁 , and 𝜕𝜔𝓁r is the common edge shared by two adjacent elements 𝜔𝓁 and 𝜔r with 
outward pointing unit normal vector 𝐧𝓁r . Fig. 2 shows an example of an unstructured polygonal mesh and a sketch of the adopted 
notation.

We start the derivation of a finite volume method for discretizing the reduced model (31). For finite volume schemes, data are 
stored and evolved in time as piecewise constant cell averages which are defined as

𝐮𝓁 ∶= 1|𝜔𝓁| ∫
𝜔𝓁

𝐮𝑑𝐱. (32)

To obtain a semi-discrete finite volume scheme, let us integrate in space the governing equations over the control volume 𝜔𝓁 by 
keeping time continuous:

|𝜔𝓁| 𝜕𝐮𝓁
𝜕𝑡

+ ∫
𝜔𝓁

(
𝜕𝐟𝑘(𝐮)
𝜕𝑥𝑘

+𝐁𝑘(𝐮)
𝜕𝐮
𝜕𝑥𝑘

− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝐮
𝜕𝑥𝑚

))
𝑑𝐱 = ∫

𝜔𝓁

𝐒(𝐮)𝑑𝐱. (33)

Application of the theorem of Gauss on the nonlinear flux and viscosity terms yields

|𝜔𝓁| 𝜕𝐮𝓁
𝜕𝑡

+ ∫
𝜕𝜔𝓁

(
𝐟𝑘(𝐮) −

(
𝜖
𝜕𝐮
𝜕𝑥𝑚

))
⋅ 𝐧𝑑𝑆 + ∫

𝜔𝓁

𝐁𝑘(𝐮)
𝜕𝐮
𝜕𝑥𝑘

𝑑𝐱 = ∫
𝜔𝓁

𝐒(𝐮)𝑑𝐱. (34)

The non-conservative terms are integrated using a path-conservative approach, see [46,9] and references therein, hence obtaining

∫
𝜔𝓁

𝐁𝑘(𝐮)
𝜕𝐮
𝜕𝑥𝑘

𝑑𝐱 = ∫
𝜕𝜔𝓁

𝐃𝑘 ⋅ 𝐧𝑑𝑆 + ∫
𝜔𝓁∖𝜕𝜔𝓁

𝐁𝑘(𝐮)
𝜕𝐮
𝜕𝑥𝑘

𝑑𝐱, (35)

where the new term 𝐃𝑘 ⋅ 𝐧 takes into account potential jumps of the solution across the element boundaries and it is defined at the 
interface 𝜕𝜔𝓁r as

𝐃𝑘 ⋅ 𝐧 = 1
1

𝐁𝑘(𝝍(𝐮𝓁 ,𝐮r , 𝑠)) ⋅ 𝐧𝓁r 𝜕𝝍 𝑑𝑠. (36)
7

2 ∫
0

𝜕𝑠
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The integration path 𝝍 is chosen to be a simple straight-line segment according to [46,9], thus it is given by 𝝍 = 𝝍(𝐮𝓁 , 𝐮r , 𝑠) =
𝐮𝓁 + 𝑠 (𝐮r − 𝐮𝓁), and the jump term (36) reduces to

𝐃𝑘 ⋅ 𝐧 = 1
2

⎛⎜⎜⎝
1

∫
0

𝐁𝑘(𝝍(𝐮𝓁 ,𝐮r , 𝑠)) ⋅ 𝐧𝓁r 𝑑𝑠
⎞⎟⎟⎠ (𝐮r − 𝐮𝓁). (37)

The first order semi-discrete finite volume scheme for the governing equations (31) then writes

𝜕𝐮𝓁
𝜕𝑡

= −
∑

r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
F(𝐮𝓁 ,𝐮r) + D(𝐮𝓁 ,𝐮r) + G(𝐮𝓁 ,𝐮r)

)
⋅ 𝐧𝓁r + 𝐒(𝐮𝓁), (38)

where the volume term in (35) vanishes since at first order any gradient of 𝐮 inside the cell is zero, and the source term integral 
simply reduces to the evaluation of 𝐒 with 𝐮𝓁 thanks to the definition of the finite volume solution (32). The numerical flux is given 
by a central approximation, that is

F(𝐮𝓁 ,𝐮r) ⋅ 𝐧𝓁r = 1
2
(
𝐟𝓁
𝑘
+ 𝐟 r

𝑘

)
𝑛𝓁r
𝑘
, (39)

and the following discretization is chosen for the non-conservative jump term (37)

D(𝐮𝓁 ,𝐮r) ⋅ 𝐧𝓁r = 1
2
𝐁𝑘(�̄�𝓁r)𝑛𝓁r

𝑘
(𝐮r − 𝐮𝓁), �̄�𝓁r = 1

2
(𝐮r + 𝐮𝓁), (40)

which corresponds to the midpoint quadrature rule for the evaluation of the path-integral (37). The dissipative numerical flux is 
computed by a Rusanov-type scheme as

G(𝐮𝓁 ,𝐮r) ⋅ 𝐧𝓁r = −𝜖𝓁r Δ𝐮𝓁r

Δ𝐱𝓁r
∶= −𝜆𝓁r ‖𝐱r − 𝐱𝓁‖ 𝐮r − 𝐮𝓁‖𝐱r − 𝐱𝓁‖ = −𝜆𝓁r (𝐮r − 𝐮𝓁), (41)

with the definitions

𝜖𝓁r ∶= 𝜆𝓁r ‖𝐱r − 𝐱𝓁‖, 𝜆𝓁r = 1
2
max

(|𝜆(𝐮𝓁)|, |𝜆(𝐮r)|) . (42)

We use the estimate of the maximum eigenvalue of the system according to (9) for the definition of the positive coefficient 𝜆𝓁r . To 
ease the notation, let us introduce the abbreviations

F̃𝓁r ∶= F̃(𝐮𝓁 ,𝐮r), D𝓁r ∶= D(𝐮𝓁 ,𝐮r), G𝓁r ∶= G(𝐮𝓁 ,𝐮r). (43)

As it stands, the finite volume scheme (38) is not structure preserving: it is neither compliant with the extra conservation laws 
(1c) nor with (25). Therefore some ad hoc modifications have to be designed in order to make the scheme structure preserving.

3.2. Geometrically compatible finite volume scheme

We start by designing a modification of the finite volume scheme (38) such that geometric compatibility is ensured by satisfying 
the GCL equation (25) as an extra conservation law of the mathematical model. For the moment, we neglect the source terms and 
the dissipation fluxes, i.e. we assume G𝓁r ⋅ 𝐧𝓁r = 𝟎 and 𝐒(𝐮) = 𝟎. We rely on a very general method firstly proposed for achieving 
thermodynamic compatibility in [1], and more recently extended to hyperbolic systems of the type (1) to recover energy conservation 
from the direct discretization of the entropy inequality [15,2,13]. Here, we apply this strategy for the first time to preserve a different 
structural property rather than thermodynamics.

Let us interpret the determinant of the distortion matrix |𝐀| as a thermodynamic potential, and the associated dual variables 
𝐰 = {𝑤𝑖𝑘} = 𝜕𝐀|𝐀| as a set of thermodynamic variables. Moreover, let F𝓁,r

𝐀 ⋅𝐧𝓁r denote the central fluxes related to the distortion tensor 
equation (30c) according to (39). Likewise, 𝐟𝐀,𝑚 represents the physical flux of equation (30c) and D𝓁r

𝐀 ⋅ 𝐧𝓁r are the corresponding 
fluctuations of the non-conservative terms restricted to (30c). According to [1], these fluxes are modified by a correction factor 𝛼𝓁r

𝐀 , 
which is defined at the cell interface, hence obtaining the modified fluxes

F̃𝓁r
𝐀 ⋅ 𝐧𝓁r = F𝓁r

𝐀 ⋅ 𝐧𝓁r − 𝛼𝓁r
𝐀 (𝐰r −𝐰𝓁) ⋅ 𝐧𝓁r = 1

2

(
𝐟𝓁𝐀,𝑘 + 𝐟 r

𝐀,𝑘

)
𝑛𝓁r
𝑘

− 𝛼𝓁r
𝐀 (𝐰r −𝐰𝓁) ⋅ 𝐧𝓁r . (44)

The scalar correction factor 𝛼𝓁r
𝐀 has no sign, and it can add or subtract the total amount of the jump in the dual variables which is 

needed to reach geometric compatibility with the GCL (25). To determine 𝛼𝓁r
𝐀 , the conservation principle is invoked. Indeed, across 

each cell boundary 𝜕𝜔𝓁r , a consistent condition implies that the sum of the fluctuations must balance the sum of the fluxes which 
have to be preserved. This sum, namely |𝐀|𝑣𝑘 in (25), must be recovered as the dot product of equation (30c) with the dual variables 
𝐰𝓁 , that is

𝐰𝓁 ⋅
(

F̃𝓁r
𝐀 ⋅ 𝐧𝓁r − 𝐟𝓁𝐀,𝑘 ⋅ 𝑛

𝓁r
𝑘

)
+𝐰r ⋅

(
𝐟 r
𝐀,𝑘 ⋅ 𝑛

𝓁r
𝑘

− F̃𝓁r
𝐀 ⋅ 𝐧𝓁r

)
+

(45)
8

𝐰𝓁 ⋅ D𝓁r
𝐀 ⋅ 𝐧𝓁r +𝐰r ⋅ Dr𝓁

𝐀 ⋅ 𝐧r𝓁 =
(
(|𝐀|𝑣𝑘)r − (|𝐀|𝑣𝑘)𝓁) 𝑛𝓁r

𝑘
.
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By inserting the definition of the modified fluxes (44) in the condition (45), we obtain the sought correction factor defined at the cell 
interface 𝜕𝜔𝓁r :

𝛼𝓁r
𝐀 =

(
(|𝐀|𝑣𝑘)r − (|𝐀|𝑣𝑘)𝓁) 𝑛𝓁r

𝑘
+
(
F𝓁r
𝐀 ⋅ 𝐧𝓁r

)
⋅ (𝐰r −𝐰𝓁) −

(
𝐰r ⋅ 𝐟 r

𝐀,𝑘 −𝐰𝓁 ⋅ 𝐟𝓁𝐀,𝑘
)
𝑛𝓁r
𝑘

(𝐰r −𝐰𝓁)2

−
(𝐰r +𝐰𝓁) ⋅ D𝓁r

𝐀 ⋅ 𝐧𝓁r

(𝐰r −𝐰𝓁)2
.

(46)

Obviously, if 𝐰𝓁 = 𝐰r then no correction occurs and we simply set 𝛼𝓁r
𝐀 = 0. We underline that the correction factor 𝛼𝐀 has no sign 

and, in principle, it is unbounded. From the numerical viewpoint, we only take care about avoiding division by zero.

Geometric compatibility with dissipation fluxes and source terms Even with smooth initial data, the solution of the PDE system (30) can 
exhibit shocks and other discontinuities, which require a stabilization of the numerical scheme that is carried out relying on parabolic 
vanishing viscosity terms. Also in this case, the compatibility with the geometric extra conservation law (25) must be respected. To 
that aim, let us add to the compatible fluxes (44) also the dissipative fluxes G𝓁r

𝐀 ⋅ 𝐧𝓁r as well as the source terms 𝐒𝐀(𝐮𝓁) = − 𝜶𝓁

𝜃(𝜏1)
, so 

that the semi-discrete evolution equation (30c) for 𝐀 now becomes

𝜕𝐀𝓁

𝜕𝑡
+

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
F̃𝓁r
𝐀 + D𝓁r

𝐀
)
⋅ 𝐧𝓁r = −

∑
r∈N𝓁

G𝓁r
𝐀 ⋅ 𝐧𝓁r + 𝐒𝐀(𝐮𝓁). (47)

The part on the left hand side of the above equation is already compatible with the GCL thanks to the modified fluxes (44) with the 
scalar correction factor given by (46). Therefore, we focus on the compatibility of the right hand side of (47). Recalling the definition 
(41) and following [15], after multiplication by the dual variables 𝐰𝓁 , for the viscous terms we obtain

𝐰𝓁 ⋅ G𝓁r
𝐀 ⋅ 𝐧𝓁r = 1

2
(
𝐰𝓁 ⋅ G𝓁r

𝐀 ⋅ 𝐧𝓁r +𝐰r ⋅ G𝓁r
𝐀 ⋅ 𝐧𝓁r +𝐰𝓁 ⋅ G𝓁r

𝐀 ⋅ 𝐧𝓁r −𝐰r ⋅ G𝓁r
𝐀 ⋅ 𝐧𝓁r

)
= 1

2
(𝐰r −𝐰𝓁) ⋅ 𝜆𝓁r(𝐀r −𝐀𝓁)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
G1

− 1
2
(𝐰r +𝐰𝓁) ⋅ 𝜆𝓁r(𝐀r −𝐀𝓁)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
G2

. (48)

The second term G2 is the approximation of the jump term related to the numerical dissipation in the GCL (25), that is

−1
2
(𝐰r +𝐰𝓁) ⋅ 𝜆𝓁r(𝐀r −𝐀𝓁) ≈ −𝜆𝓁r(|𝐀|r − |𝐀|𝓁). (49)

Indeed, applying path integration in the state variables 𝐀, the following relation holds true by construction:

𝐀r

∫
𝐀𝓁

𝐰 ⋅ 𝑑𝐀 =

𝐀r

∫
𝐀𝓁

𝜕𝐀|𝐀| ⋅ 𝑑𝐀 = |𝐀|r − |𝐀|𝓁 , (50)

and the term 12 (𝐰
r +𝐰𝓁)(𝐀r −𝐀𝓁) in (49) can be seen as a numerical approximation of the path integral in (50) using a trapezoidal 

rule. Therefore, we still remain with an additional contribution given by the first term G1 in (48). To control its production of 
numerical dissipation, we reformulate the jump in the dual variables 𝐰 as a jump in the state variables 𝐀 through the Hessian matrix 
𝜕2𝐀𝐀|𝐀|𝓁r which verifies the Roe property

𝜕2𝐀𝐀|𝐀|𝓁r ⋅ (𝐀r −𝐀𝓁) =𝐰r −𝐰𝓁 . (51)

The Hessian matrix at the cell interface is computed as

𝜕2𝐀𝐀|𝐀|𝓁r =

1

∫
0

𝜕2𝐀𝐀|𝐀|(𝝃(𝑠))𝑑𝑠, 𝝃(𝑠) =𝐀𝓁 + 𝑠 (𝐀r −𝐀𝓁), 0 ≤ 𝑠 ≤ 1, (52)

where 𝜕2𝐀𝐀|𝐀| explicitly writes

𝜕2𝐀𝐀|𝐀| =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢

0 0 0 0 𝐴33 −𝐴32 0 −𝐴23 𝐴22
0 0 0 −𝐴33 0 𝐴31 𝐴23 0 −𝐴21
0 0 0 𝐴32 −𝐴31 0 −𝐴22 𝐴21 0
0 −𝐴33 𝐴32 0 0 0 0 𝐴13 −𝐴12
𝐴33 0 −𝐴31 0 0 0 −𝐴13 0 𝐴11

−𝐴32 𝐴31 0 0 0 0 𝐴12 −𝐴11 0
0 𝐴23 −𝐴22 0 −𝐴13 𝐴12 0 0 0

−𝐴23 0 𝐴21 𝐴13 0 −𝐴11 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥
. (53)
9

⎢⎣ 𝐴22 −𝐴21 0 −𝐴12 𝐴11 0 0 0 0 ⎥⎦
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These contributions, which come from all the faces N𝓁 of the cell, must vanish in order to obtain compatibility with the GCL equation 
(25). Consequently, a production term Π𝓁

𝐀 is introduced to balance these terms with opposite sign, that is given by

Π𝓁
𝐀 =

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| 1
2
𝜆𝓁r(𝐀r −𝐀𝓁) ⋅ 𝜕2𝐀𝐀|𝐀|𝓁r (𝐀r −𝐀𝓁), (54)

where only jumps in the state variables appear because of the use of the Roe-type Hessian matrix (52). The production term Π𝓁
𝐀 is a 

scalar, that now needs to be distributed among all the components 𝐴𝓁
𝑖𝑘

of the distortion tensor, hence obtaining new contributions 
𝑃 𝓁
𝑖𝑘

. Here, we adopt a rescaling with respect to the trace of the distortion tensor, as proposed in [14] for the redistribution of a 
production term associated to the Reynolds stress tensor, thus we define 𝑃 𝓁

𝑖𝑘
as

𝑃 𝓁
𝑖𝑘
=Π𝓁

𝐀
𝑤𝓁
𝑖𝑘

tr(𝐰𝓁 𝐰𝓁,⊤)
, (55)

with the positive trace tr(𝐰𝓁 𝐰𝓁,⊤) =𝑤𝓁
𝑖𝑘
𝑤𝓁
𝑖𝑘
≥ 0.

At last, it remains to verify the compatibility with the source terms. Multiplication of 𝐒𝐀(𝐮𝓁) by the dual variables yields

−𝐰𝓁 ⋅
𝜶𝓁

𝜃(𝜏1)
= −𝑤𝓁

𝑖𝑘
⋅
𝛼𝓁
𝑖𝑘

𝜃(𝜏1)
= 0, (56)

therefore the compatibility is proven by construction of the dual variables 𝐰, as demonstrated at the continuous level by (29). All 
the related details are reported in Appendix A.

Theorem 1 (Geometric compatibility). The semi-discrete finite volume scheme for the equation of the distortion tensor 𝐀 given by

𝜕𝐀𝓁

𝜕𝑡
+

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
F̃𝓁r
𝐀 + D𝓁r

𝐀 + G𝓁r
𝐀
)
⋅ 𝐧𝓁r = − 𝜶𝓁

𝜃(𝜏1)
+ Π𝓁

𝐀
𝐰𝓁

tr(𝐰𝓁 𝐰𝓁,⊤)
, (57)

with the geometrically compatible fluxes (44), the non-conservative products (40), the dissipation terms (41) and the production term (54), 
satisfies the extra conservation law (25) with the following conservative semi-discrete scheme:

𝜕|𝐀|𝓁
𝜕𝑡

+
∑

r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| 1
2

(
𝐹 𝓁|𝐀| + 𝐹 r|𝐀|

)
⋅ 𝐧𝓁r = 0. (58)

The compatible numerical fluxes for the geometric conservation law are given by

𝐹 𝓁|𝐀| ⋅ 𝐧𝓁r = ((|𝐀|𝑣𝑘)𝓁 −𝐰𝓁 ⋅ 𝐟𝓁𝐀,𝑘)𝑛
𝓁r
𝑘

+𝐰𝓁 ⋅
(
F̃𝓁r
𝐀 + D𝓁r

𝐀
)
⋅ 𝐧𝓁r + 2𝜆𝓁r |𝐀|𝓁 ,

𝐹 r|𝐀| ⋅ 𝐧𝓁r = ((|𝐀|𝑣𝑘)r −𝐰r ⋅ 𝐟 r
𝐀,𝑘)𝑛

𝓁r
𝑘

+𝐰r ⋅
(
F̃𝓁r
𝐀 + Dr𝓁

𝐀
)
⋅ 𝐧𝓁r − 2𝜆𝓁r |𝐀|r . (59)

Proof. Let us recall that the discrete Gauss theorem over a closed surface yields the relation∑
r∈N𝓁

|𝜕𝜔𝓁r|𝐧𝓁r = 𝟎. (60)

By dot multiplying the distortion equation (57) by the dual variables 𝐰𝓁 , we obtain

𝐰𝓁 ⋅
𝜕𝐀𝓁

𝜕𝑡
+

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| 𝐰𝓁 ⋅
(
F̃𝓁r
𝐀 + D𝓁r

𝐀 + G𝓁r
𝐀
)
⋅ 𝐧𝓁r =𝐰𝓁 ⋅

(
− 𝜶𝓁

𝜃(𝜏1)
+ Π𝓁

𝐀
𝐰𝓁

tr(𝐰𝓁 𝐰𝓁,⊤)

)
. (61)

On the right hand side, we have

𝐰𝓁 ⋅
(
− 𝜶𝓁

𝜃(𝜏1)
+ Π𝓁

𝐀
𝐰𝓁

tr(𝐰𝓁 𝐰𝓁,⊤)

)
= 0 +Π𝓁

𝐀, (62)

where the first term vanishes thanks to the compatibility condition (56) (see Appendix A) and the second term verifies by construction 
the relation

𝐰𝓁 ⋅Π𝓁
𝐀

𝐰𝓁

tr(𝐰𝓁 𝐰𝓁,⊤)
=𝑤𝓁

𝑖𝑘
Π𝓁
𝐀

𝑤𝓁
𝑖𝑘

𝑤𝓁
𝑖𝑘
𝑤𝓁
𝑖𝑘

=Π𝓁
𝐀. (63)
10

On the left hand side of (61), we add and subtract the terms 12 𝐰
r ⋅ F̃𝓁r

𝐀 ⋅ 𝐧𝓁r , 12 𝐰
r ⋅ Dr𝓁

𝐀 ⋅ 𝐧r𝓁 and 12 𝐰
r ⋅ G𝓁r

𝐀 ⋅ 𝐧𝓁r , hence obtaining
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𝜕|𝐀|𝓁
𝜕𝑡

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
(𝐰𝓁 +𝐰r) ⋅ F̃𝓁r

𝐀 ⋅ 𝐧𝓁r + (𝐰𝓁 −𝐰r) ⋅ F̃𝓁r
𝐀 ⋅ 𝐧𝓁r

)
+ 1

2
∑

r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
𝐰𝓁 ⋅ D𝓁r

𝐀 ⋅ 𝐧𝓁r + 𝐰r ⋅ Dr𝓁
𝐀 ⋅ 𝐧r𝓁 +𝐰𝓁 ⋅ D𝓁r

𝐀 ⋅ 𝐧𝓁r − 𝐰r ⋅ Dr𝓁
𝐀 ⋅ 𝐧r𝓁)

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
(𝐰𝓁 +𝐰r) ⋅ G𝓁r

𝐀 ⋅ 𝐧𝓁r + (𝐰𝓁 −𝐰r) ⋅ G𝓁r
𝐀 ⋅ 𝐧𝓁r

)
=Π𝓁

𝐀.

(64)

Due to the continuity of the computational mesh, it holds that 𝐧𝓁r = −𝐧r𝓁 . Furthermore, the term (𝐰𝓁 −𝐰r) ⋅F̃𝓁r
𝐀 ⋅𝐧𝓁r can be rewritten 

by means of the compatibility condition (45), which leads to

𝜕|𝐀|𝓁
𝜕𝑡

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (𝐰𝓁 +𝐰r) ⋅ F̃𝓁r
𝐀 ⋅ 𝐧𝓁r

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| ((
(|𝐀|𝑣𝑘)r − (|𝐀|𝑣𝑘)𝓁)+ (

𝐰𝓁 ⋅ 𝐟𝓁𝐀,𝑘 −𝐰r ⋅ 𝐟 r
𝐀,𝑘

))
𝑛𝓁r
𝑘

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
𝐰𝓁 ⋅ D𝓁r

𝐀 +𝐰r ⋅ Dr𝓁
𝐀
)
⋅ 𝐧𝓁r

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
(𝐰𝓁 +𝐰r) ⋅ G𝓁r

𝐀 ⋅ 𝐧𝓁r + (𝐰𝓁 −𝐰r) ⋅ G𝓁r
𝐀 ⋅ 𝐧𝓁r

)
=Π𝓁

𝐀.

(65)

By virtue of the discrete Gauss theorem (60), we can add to the left hand side of the above equation a zero term given by∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
(|𝐀|𝑣𝑘)𝓁 −𝐰𝓁 ⋅ 𝐟𝓁𝐀,𝑘

)
𝑛𝓁r
𝑘

= 0,

and we reformulate the numerical dissipation according to (48)-(49) with the Roe-type property (50), hence obtaining

𝜕|𝐀|𝓁
𝜕𝑡

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (𝐰𝓁 +𝐰r) ⋅ F̃𝓁r
𝐀 ⋅ 𝐧𝓁r

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
(|𝐀|𝑣𝑘)r + (|𝐀|𝑣𝑘)𝓁) 𝑛𝓁r

𝑘

− 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
𝐰𝓁 ⋅ 𝐟𝓁𝐀,𝑘 +𝐰r ⋅ 𝐟 r

𝐀,𝑘

)
𝑛𝓁r
𝑘

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
𝐰𝓁 ⋅ D𝓁r

𝐀 +𝐰r ⋅ Dr𝓁
𝐀
)
⋅ 𝐧𝓁r

+
∑

r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| 1
2
𝜆𝓁r(𝐀r −𝐀𝓁) ⋅ 𝜕2𝐀𝐀|𝐀|𝓁r (𝐀r −𝐀𝓁) − 𝜆𝓁r (|𝐀|r − |𝐀|𝓁)

= Π𝓁
𝐀.

(66)

The last term on the left hand side partially cancels with the production term Π𝓁
𝐀, that follows by the definition (54). Therefore, the 

fluxes which satisfy the extra conservation law (25) in the semi-discrete finite volume scheme (58) result to be as given by (59). □

3.3. Thermodynamically compatible finite volume scheme

After achieving compatibility with the extra conservation law (25), the semi-discrete finite volume scheme must be modified again 
to be compliant with the Second Law of Thermodynamics, meaning that it must fulfill also the entropy balance (1c). This is equivalent 
to satisfy the Gibbs relation (14), implying that we need to work with all the state variables 𝐮 plus the density. However, thanks 
to the geometrically compatible discretization achieved for the distortion tensor 𝐀, we can deduce the density directly from the 
determinant of 𝐀 as 𝜌 = 𝜌0|𝐀|, therefore the full vector of state variables is simply given by �̃� = (𝜌0|𝐀|, 𝐮)⊤ = (𝜌0|𝐀|, 𝜌𝑣𝑖, E, 𝐴𝑖𝑘, 𝐽𝑘)⊤. 
The thermodynamic correction is carried out in analogy with the one employed for the geometric compatibility, hence we introduce 
a modified set of numerical fluxes of the form
11

F̂𝓁r ⋅ 𝐧𝓁r = F̃𝓁r − 𝛼𝓁r
𝑆
(�̃�r − �̃�𝓁), (67)
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where 𝛼𝓁r
𝑆

is a scalar correction factor that must be determined to obtain thermodynamic compatibility. The fluxes F̃𝓁r ⋅𝐧𝓁r coincide 
with the central fluxes for all equations of (30) except for the distortion tensor equation, for which they are given by (44). Further-
more, the flux in the continuity equation (1a) is computed from the compatible fluxes (59) of the semi-discrete equation for |𝐀| given 
by (58) upon multiplication by 𝜌𝓁0 . Consequently, we have that

F̃𝓁r ⋅ 𝐧𝓁r =

⎧⎪⎪⎨⎪⎪⎩

1
2 𝜌

𝓁
0

(
𝐹 𝓁|𝐀| + 𝐹 r|𝐀|

)
⋅ 𝐧𝓁r for (1a) with fluxes (59)

F𝓁r ⋅ 𝐧𝓁r for (30a)-(30b)-(30d)

F̃𝓁r
𝐀 ⋅ 𝐧𝓁r for (30c)

. (68)

Since the compliance with the GCL must not be destroyed by this new modification, we deliberately choose to add the correction 
factor 𝛼𝓁r

𝑆
to only a subset of dual variables among 𝐫 in (15), which is referred to as �̃� in (67). Specifically, we allow the momentum 

and the thermal impulse equations to account for the thermodynamic compatibility, thus defining

�̃� = 1
𝑇

(
0, 𝜕𝜌𝐯E,0,𝟎, 𝜕𝐉E

)⊤ = {𝑟𝑗} =
1
𝑇
(0,−𝑣𝑖,0,0𝑖𝑘,−𝛽𝑘)⊤. (69)

We remark that the equations for density and distortion tensor are not affected by the thermodynamic corrections since they already 
carry the geometric compatibility correction. Let us also note that the total energy equation is not modified in order to maintain 
stationary solutions of the governing PDE, as explained at the end of this section. To compute the correction factor 𝛼𝓁r

𝑆
we can now 

proceed along the lines of [1,3], hence requiring that the sum of all the fluctuations across an element interface is equal to the flux 
difference of the entropy equation (1c), thus leading to

𝐫𝓁 ⋅
(
F̂𝓁r ⋅ 𝐧𝓁r − 𝐟𝓁

𝑘
⋅ 𝑛𝓁r

𝑘

)
+ 𝐫r ⋅

(
𝐟 r
𝑘 ⋅ 𝑛

𝓁r
𝑘

− F̂𝓁r ⋅ 𝐧𝓁r
)
+

𝐫𝓁 ⋅ D𝓁r ⋅ 𝐧𝓁r + 𝐫r ⋅ Dr𝓁 ⋅ 𝐧𝓁r =
(
(S𝑣𝑘 + 𝛽𝑘)r − (S𝑣𝑘 + 𝛽𝑘)𝓁

)
𝑛𝓁r
𝑘
.

(70)

By employing the flux definition (67) in the conservation condition (70), the thermodynamic correction scalar 𝛼𝓁r
𝑆

is found to be 
given by

𝛼𝓁r
𝑆

=

(
(S𝑣𝑘 + 𝛽𝑘)r − (S𝑣𝑘 + 𝛽𝑘)𝓁

)
𝑛𝓁r
𝑘

+
(
F̃𝓁r ⋅ 𝐧𝓁r

)
⋅
(
𝐫r − 𝐫𝓁

)
−
(
𝐫r ⋅ 𝐟 r

𝑘
− 𝐫𝓁 ⋅ 𝐟𝓁

𝑘

)
𝑛𝓁r
𝑘(

�̃�r − �̃�𝓁
)2

−
(
𝐫r + 𝐫𝓁

)
⋅ D𝓁r ⋅ 𝐧𝓁r(

�̃�r − �̃�𝓁
)2 .

(71)

Obviously, we set 𝛼𝓁r
𝑆

= 0 if �̃�𝓁 = �̃�r . Even in this case, the correction factor 𝛼𝑆 may be unbounded, and no special treatment 
is numerically applied apart from avoiding division by zero. The source terms in equations (30c) and (30d) are compatible by 
construction also for thermodynamic compatibility. Indeed, multiplication of the sources by the dual variables 𝜕𝐴𝓁

𝑖𝑘
E = 𝛼𝓁

𝑖𝑘
and 

𝜕𝐽𝓁
𝑘

E = 𝛽𝓁
𝑘

, with negative sign and divided by the temperature according to (14), yields

−
𝛼𝓁
𝑖𝑘

𝑇 𝓁

(
−

𝛼𝓁
𝑖𝑘

𝜃1(𝜏1)

)
−
𝛽𝓁
𝑘

𝑇 𝓁

(
−

𝛽𝓁
𝑘

𝜃2(𝜏2)

)
=

𝛼𝓁
𝑖𝑘
𝛼𝓁
𝑖𝑘

𝜃1(𝜏1)𝑇 𝓁
+

𝛽𝓁
𝑘
𝛽𝓁
𝑘

𝜃2(𝜏2)𝑇 𝓁
≥ 0, (72)

which is exactly the source term in the entropy equation (1c).
The geometrically and thermodynamically compatible semi-discrete finite volume scheme without numerical dissipation is then 

given by

𝜕𝐮𝓁
𝜕𝑡

+
∑

r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
F̂𝓁r + D𝓁r

)
⋅ 𝐧𝓁r = 𝐒(𝐮𝓁), (73)

with the definition of the compatible fluxes (67)-(68) and the thermodynamic correction factor (71).

Remark (On the energy equation in the thermodynamic correction). The subset of dual variables �̃� in the flux correction (67) does 
not take into account the dual variable in the energy equation, which is equal to 1∕𝑇 . Without loss of generality, let us consider a 
computational domain Ω = [−𝐿; 𝐿]2 with periodic boundaries and 𝐿 ∈ℝ, and the following initial condition with only a discontinuity 
in the density field located at ||𝐱|| =𝑅0 ⊂Ω:

𝜌(𝐱, 𝑡 = 0) =

{
𝜌𝐿0 for ||𝐱|| ≤𝑅0

𝜌𝑅0 for ||𝐱|| >𝑅0
, 𝐯(𝐱, 𝑡 = 0) = 𝟎, 𝑝(𝐱, 𝑡 = 0) = 𝑝0, 𝐀(𝐱, 𝑡 = 0) = 𝐈, 𝐉(𝐱, 𝑡 = 0) = 𝟎. (74)

In this case, the total energy is only given by the internal energy contribution which is constant, namely

𝑝0
12

E(𝐱, 𝑡 = 0) =
𝛾 − 1

, (75)
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therefore the semi-discrete finite volume scheme (73) yields

𝜕𝐮𝓁
𝜕𝑡

= 𝟎, (76)

and the initial condition (74) also represents the exact solution. The correction factor is a priori nonzero, i.e. 𝛼𝓁r
𝑆

≠ 0, because of 
the pressure and temperature terms in the momentum and thermal impulse equations, respectively. If we add the thermodynamic 
correction in the energy equation, the associated flux F̂𝓁r

E
⋅ 𝐧𝓁r should be corrected with the jump term in the dual variable 1∕𝑇 , 

leading to

F̂𝓁r
E

⋅ 𝐧𝓁r = F𝓁r
E

⋅ 𝐧𝓁r − 𝛼𝓁r
𝑆

(
1
𝑇 r

− 1
𝑇 𝓁

)
. (77)

This would no longer preserve the constant energy density (75) because the discontinuity in the density profile causes a jump in the 
temperature which is defined as

𝑇 (𝐱, 𝑡 = 0) =
𝑝0

𝜌(𝐱, 𝑡 = 0) 𝑐𝑣 (𝛾 − 1)
. (78)

As a consequence, the artificial flux (77) is not physical and thus the thermodynamic dual variable 1∕𝑇 is not included in the 
dual vector �̃� for computing the scalar factor 𝛼𝓁r

𝑆
in (71), so that the geometrically and thermodynamically compatible scheme still 

maintains this physical equilibrium, i.e. we obtain again the correct stationary solution given by (76).

Thermodynamic compatibility with dissipation terms As done for the geometric compatibility, to ensure the stability of the scheme in 
case of discontinuous solutions we also take into account the parabolic dissipation terms (41), thus we supplement the geometrically 
and thermodynamically compatible scheme (73) with the dissipative fluxes G(𝐮𝓁 , 𝐮r) ⋅ 𝐧𝓁r , hence giving rise to the non-negative 
production term Π𝓁 in the entropy inequality (1c).

Theorem 2 (Thermodynamic compatibility). The semi-discrete finite volume scheme for the reduced model (30)

𝜕𝐮𝓁
𝜕𝑡

+
∑

r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
F̂𝓁r + D𝓁r + G𝓁r

)
⋅ 𝐧𝓁r = 𝐒(𝐮𝓁), (79)

with the geometrically and thermodynamically compatible fluxes (67)-(68), the non-conservative products (40) and the dissipation terms 
(41), satisfies the extra conservation law (1c) with the following conservative semi-discrete scheme:

𝜕S𝓁

𝜕𝑡
+

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| 1
2
(
𝐹 𝓁

S
+ 𝐹 r

S

)
⋅ 𝐧𝓁r =Π𝓁 +

𝛼𝓁
𝑖𝑘
𝛼𝓁
𝑖𝑘

𝜃1(𝜏1)𝑇 𝓁
+

𝛽𝓁
𝑘
𝛽𝓁
𝑘

𝜃2(𝜏2)𝑇 𝓁
. (80)

The compatible numerical fluxes for the entropy balance are given by

𝐹 𝓁
S
⋅ 𝐧𝓁r = ((S𝑣𝑘 + 𝛽𝑘)𝓁 − 𝐫𝓁 ⋅ 𝐟𝓁

𝑘
)𝑛𝓁r

𝑘
+ 𝐫𝓁 ⋅

(
F̂𝓁r + D𝓁r

)
⋅ 𝐧𝓁r + 2𝜆𝓁r S𝓁 ,

𝐹 r
S
⋅ 𝐧𝓁r = ((S𝑣𝑘 + 𝛽𝑘)r − 𝐫r ⋅ 𝐟 r

𝑘)𝑛
𝓁r
𝑘

+ 𝐫r ⋅
(
F̂𝓁r + Dr𝓁) ⋅ 𝐧𝓁r − 2𝜆𝓁r Sr .

(81)

Furthermore, assuming 𝑇 𝓁 > 0 and 𝜕𝐮𝐮S𝓁r ≤ 0, the right hand side of the entropy balance is non-negative:

Π𝓁 +
𝛼𝓁
𝑖𝑘
𝛼𝓁
𝑖𝑘

𝜃1(𝜏1)𝑇 𝓁
+

𝛽𝓁
𝑘
𝛽𝓁
𝑘

𝜃2(𝜏2)𝑇 𝓁
≥ 0, (82)

therefore the scheme (79) also satisfies a cell entropy inequality.

Proof. The proof is similar to the one already carried out for Theorem 1. We consider the dual variables �̃� = (𝜌0|𝐀|, 𝐮)⊤ where 
the density is directly evaluated from the determinant of the distortion tensor, and the associated fluxes are computed using (59)
multiplied by 𝜌𝓁0 in the GCL equation (58). With a little abuse of notation, let us omit the tilde symbol and assume that the additional 
fluxes related to the density equation are embedded in the flux tensor, thus we will simply use 𝐮𝓁 (and thus the dual variables 
𝐫𝓁) and F̂𝓁r . After dot multiplying the semi-discrete system (79) by the dual variables 𝐫𝓁 , and adding and subtracting the terms 
1
2 𝐫

r ⋅ F̂𝓁r ⋅ 𝐧𝓁r , 12 𝐫
r ⋅ Dr𝓁 ⋅ 𝐧r𝓁 and 12 𝐫

r ⋅ G𝓁r ⋅ 𝐧𝓁r , we obtain

𝜕S𝓁

𝜕𝑡
+ 1

2
∑

r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
(𝐫𝓁 + 𝐫r) ⋅ F̂𝓁r ⋅ 𝐧𝓁r + (𝐫𝓁 − 𝐫r) ⋅ F̂𝓁r ⋅ 𝐧𝓁r

)
+ 1 ∑ |𝜕𝜔𝓁r| (𝐫𝓁 ⋅ D𝓁r ⋅ 𝐧𝓁r + 𝐫r ⋅ Dr𝓁 ⋅ 𝐧r𝓁 + 𝐫𝓁 ⋅ D𝓁r ⋅ 𝐧𝓁r − 𝐫r ⋅ Dr𝓁 ⋅ 𝐧r𝓁) (83)
13

2
r∈N𝓁 |𝜔𝓁|
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+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
(𝐫𝓁 + 𝐫r) ⋅ G𝓁r ⋅ 𝐧𝓁r + (𝐫𝓁 − 𝐫r) ⋅ G𝓁r ⋅ 𝐧𝓁r

)
= 𝐫𝓁 ⋅ 𝐒(𝐮𝓁).

We analyze the compatibility of the source terms, which explicitly write

𝐫𝓁 ⋅ 𝐒(𝐮𝓁) = −
𝛼𝓁
𝑖𝑘

𝑇 𝓁

(
−

𝛼𝓁
𝑖𝑘

𝜃1(𝜏1)

)
−
𝛽𝓁
𝑘

𝑇 𝓁

(
−

𝛽𝓁
𝑘

𝜃2(𝜏2)

)
− 𝛼𝓁

𝑖𝑘
Π𝓁
𝐀

𝑤𝓁
𝑖𝑘

𝑤𝓁
𝑖𝑘
𝑤𝓁
𝑖𝑘

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
=0

=
𝛼𝓁
𝑖𝑘
𝛼𝓁
𝑖𝑘

𝜃1(𝜏1)𝑇 𝓁
+

𝛽𝓁
𝑘
𝛽𝓁
𝑘

𝜃2(𝜏2)𝑇 𝓁
, (84)

where the production term vanishes thanks to the relation 𝛼𝓁
𝑖𝑘
𝑤𝓁
𝑖𝑘
= 0 as proven for the geometric compatibility (see Appendix A). 

Thus we retrieve the source terms of the entropy balance law (80). Back to equation (83), we use the compatibility condition (70) to 
rewrite the term (𝐫𝓁 − 𝐫r) ⋅ F̂𝓁r ⋅ 𝐧𝓁r , and we get

𝜕S𝓁

𝜕𝑡
+ 1

2
∑

r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (𝐫𝓁 + 𝐫r) ⋅ F̂𝓁r ⋅ 𝐧𝓁r

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| ((
(S𝑣𝑘 + 𝛽𝑘)r − (S𝑣𝑘 + 𝛽𝑘)𝓁

)
+
(
𝐫𝓁 ⋅ 𝐟𝓁

𝑘
− 𝐫r ⋅ 𝐟 r

𝑘

))
𝑛𝓁r
𝑘

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
𝐫𝓁 ⋅ D𝓁r + 𝐫r ⋅ Dr𝓁) ⋅ 𝐧𝓁r

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
(𝐫𝓁 + 𝐫r) ⋅ G𝓁r ⋅ 𝐧𝓁r + (𝐫𝓁 − 𝐫r) ⋅ G𝓁r ⋅ 𝐧𝓁r

)
=

𝛼𝓁
𝑖𝑘
𝛼𝓁
𝑖𝑘

𝜃1(𝜏1)𝑇 𝓁
+

𝛽𝓁
𝑘
𝛽𝓁
𝑘

𝜃2(𝜏2)𝑇 𝓁
.

(85)

Adding on the left hand side term

1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
(S𝑣𝑘 + 𝛽𝑘)𝓁 − 𝐫𝓁 ⋅ 𝐟𝓁

𝑘

)
𝑛𝓁r
𝑘

= 0,

which corresponds to a zero contribution thanks to the property (60), leads to

𝜕S𝓁

𝜕𝑡
+ 1

2
∑

r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (𝐫𝓁 + 𝐫r) ⋅ F̂𝓁r ⋅ 𝐧𝓁r

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
(S𝑣𝑘 + 𝛽𝑘)r + (S𝑣𝑘 + 𝛽𝑘)𝓁

)
𝑛𝓁r
𝑘

− 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
𝐫𝓁 ⋅ 𝐟𝓁

𝑘
+ 𝐫r ⋅ 𝐟 r

𝑘

)
𝑛𝓁r
𝑘

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
𝐫𝓁 ⋅ D𝓁r + 𝐫r ⋅ Dr𝓁) ⋅ 𝐧𝓁r

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
(𝐫𝓁 + 𝐫r) ⋅ G𝓁r ⋅ 𝐧𝓁r + (𝐫𝓁 − 𝐫r) ⋅ G𝓁r ⋅ 𝐧𝓁r

)
=

𝛼𝓁
𝑖𝑘
𝛼𝓁
𝑖𝑘

𝜃1(𝜏1)𝑇 𝓁
+

𝛽𝓁
𝑘
𝛽𝓁
𝑘

𝜃2(𝜏2)𝑇 𝓁
.

(86)

Relying on the same reasoning applied for the geometric compatibility, the dissipation terms 𝐫𝓁 ⋅ G𝓁r ⋅ 𝐧𝓁r can be rearranged as in 
(48), that is

𝐫𝓁 ⋅ G𝓁r ⋅ 𝐧𝓁r = 1
2
(𝐫r − 𝐫𝓁) ⋅ 𝜆𝓁r(𝐮r − 𝐮𝓁) − 1

2
(𝐫r + 𝐫𝓁) ⋅ 𝜆𝓁r(𝐮r − 𝐮𝓁). (87)

Likewise in (49), due to the path integral

𝐮r

𝐫 ⋅ 𝑑𝐮 =

𝐮r

𝜕𝐮S ⋅ 𝑑𝐮 = Sr − S𝓁 , (88)
14

∫
𝐮𝓁

∫
𝐮𝓁
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we interpret the second term on the right hand side as an approximation of the jump term in the entropy variables, thus

−1
2
(𝐫r + 𝐫𝓁) ⋅ 𝜆𝓁r(𝐮r − 𝐮𝓁) ≈ −𝜆𝓁r(Sr − S𝓁). (89)

The jump in the dual variables present in the first term in (87) is converted into a jump in the state variables by introducing the 
Hessian matrix 𝜕2𝐮𝐮S𝓁r which verifies the Roe property

𝜕2𝐮𝐮S𝓁r ⋅ (𝐮r − 𝐮𝓁) = 𝐫r − 𝐫𝓁 . (90)

Therefore, using (89) and (90) in (86), we arrive at

𝜕S𝓁

𝜕𝑡
+ 1

2
∑

r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (𝐫𝓁 + 𝐫r) ⋅ F̂𝓁r ⋅ 𝐧𝓁r

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
(S𝑣𝑘 + 𝛽𝑘)r + (S𝑣𝑘 + 𝛽𝑘)𝓁

)
𝑛𝓁r
𝑘

− 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
𝐫𝓁 ⋅ 𝐟𝓁

𝑘
+ 𝐫r ⋅ 𝐟 r

𝑘

)
𝑛𝓁r
𝑘

+ 1
2

∑
r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| (
𝐫𝓁 ⋅ D𝓁r + 𝐫r ⋅ Dr𝓁) ⋅ 𝐧𝓁r

−
∑

r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| 𝜆𝓁r (Sr − S𝓁)

= Π𝓁 +
𝛼𝓁
𝑖𝑘
𝛼𝓁
𝑖𝑘

𝜃1(𝜏1)𝑇 𝓁
+

𝛽𝓁
𝑘
𝛽𝓁
𝑘

𝜃2(𝜏2)𝑇 𝓁
,

(91)

with the production term given by

Π𝓁 = −
∑

r∈N𝓁

|𝜕𝜔𝓁r||𝜔𝓁| 1
2
𝜆𝓁r(𝐮r − 𝐮𝓁) ⋅ 𝜕2𝐮𝐮S𝓁r (𝐮r − 𝐮𝓁). (92)

The fluxes in the semi-discrete finite volume scheme (80) that guarantees the compatibility with the extra conservation law (1c)
result to be as given by (81). Finally, in the presence of numerical viscosity, i.e. when 𝜆𝓁r > 0, the entropy inequality is retrieved 
since the resulting term on the right hand side of (91) is non-negative, meaning that the positivity condition (82) is fulfilled due to 
the assumptions 𝜃1 > 0, 𝜃2 > 0, 𝑇 𝓁 > 0 and 𝜕2𝐮𝐮S𝓁r ≤ 0. The cell entropy inequality is thus satisfied at the semi-discrete level by the 
finite volume scheme (79). □

3.4. Time discretization

The explicit time marching algorithm is given by Runge-Kutta schemes that are listed in Appendix B for order one, two and 
four. The associated time step is computed according to a classical CFL-type stability condition based on the maximum hyperbolic 
eigenvalue estimate given by (9) and the maximum viscous eigenvalue related to the parabolic dissipative terms:

Δ𝑡 ≤ CFL

min
𝓁∈𝑁𝓁

ℎ𝓁

max
𝓁∈𝑁𝓁

(|𝜆𝓁|+ 2 𝜆
𝓁

ℎ𝓁

) , (93)

where CFL is the Courant-Friedrichs-Lewy number and ℎ𝓁 =
√|𝜔𝓁| is the characteristic cell size. In the case of stiff source terms, 

i.e. when 𝜏1 → 0 or 𝜏2 → 0, the time step must be reduced according to the time scale imposed by the sources because of the explicit 
time discretization.

4. Numerical results

In this section, we propose a suite of test cases aiming at validating the accuracy and the robustness of the novel Hyperbolic 
Geometrically and Thermodynamically Compatible finite volume schemes (79), which will be labeled as HGTC. We demonstrate that 
the compatibility is preserved at the semi-discrete level up to the order of the time integrator, and we systematically measure the 
errors of mass conservation (𝜀𝐴) and total entropy balance (𝜀𝑆 ). More precisely, we monitor over time the following quantities in 
𝐿∞ norm over the entire computational domain Ω:
15

𝛿𝐀 = ‖‖ |𝐀|− 𝜌∕𝜌0 ‖‖∞ , 𝛿𝑆 = ‖S − S(𝜌, 𝑝)‖∞ . (94)



Journal of Computational Physics 507 (2024) 112957W. Boscheri, R. Loubère, J.-P. Braeunig et al.

Table 1

Numerical convergence results for the isentropic vortex problem using the HGTC scheme. 
The errors are measured in the 𝐿2 norm and refer to the variables 𝜌 = 𝜌0 |𝐀| (density), 𝑣1
(horizontal velocity) and pressure 𝑝 at time 𝑡𝑓 = 0.25.

ℎ ‖‖𝜌0 |𝐴|‖‖2 𝑂(𝜌0 |𝐴|) ‖‖𝑣1‖‖2 O(𝑣1) ‖𝑝‖2 O(𝑝)
3.20E-01 6.2483E-02 - 1.5675E-01 - 7.9011E-02 -
1.65E-01 3.1941E-02 1.01 7.9131E-02 1.03 4.0536E-02 1.01
1.09E-01 2.1427E-02 0.97 5.3292E-02 0.96 2.7139E-02 0.98
8.57E-02 1.6231E-02 1.14 3.9863E-02 1.19 2.0620E-02 1.13

For 𝛿𝐴, the quantity |𝐀| is computed by evaluating the determinant of the distortion tensor 𝐀 by using the components 𝐴𝑖𝑘 that 
are evolved according to the semi-discrete scheme (57), whereas the quantity 𝜌∕𝜌0 is obtained with |𝐀| taken from the solution of 
the extra conservation law (25) discretized by the scheme (58) with fluxes (59). For 𝛿𝑆 , S is the total entropy computed from the 
entropy equation (1c) solved as an extra conservation law with the semi-discrete scheme (80), while S(𝜌, 𝑝) is evaluated from the 
equation of state given by E1 in (3), namely

S(𝜌, 𝑝) = 𝜌 log
(
𝑝

𝜌𝛾

)
𝑐𝑣, 𝜌 = 𝜌0 |𝐀|. (95)

As such, the structure-preserving properties of the scheme are numerically investigated. If not stated otherwise, we set the CFL 
number to CFL = 0.5 in (93) and the polytropic index of the gas is assumed to be 𝛾 = 7∕5, whereas the specific heat at constant 
volume is always chosen to be 𝑐𝑣 = 2.5. Whenever a viscosity coefficient 𝜇 is specified, the relaxation time 𝜏1 is computed according 
to 𝜇 = 1

6𝜌0𝑐
2
𝑠 𝜏1. Likewise, if a heat conduction coefficient 𝜅 is set, the corresponding relaxation time 𝜏2 is evaluated from the 

asymptotic relation 𝜅 = 𝜌0𝑇0𝑐
2
ℎ
𝜏2. In the other cases, no source terms are considered, thus we set 𝜏1 = 𝜏2 = 1020 hence retrieving 

the behavior of elastic solids without heat conduction. The distortion matrix is always initialized as 𝐀 = 𝐈, and the thermal impulse 
is initially given 𝐉 = 𝟎. The reference density and temperature are set to 𝜌0 = 𝜌(𝐱, 𝑡 = 0) and 𝑇0 = 1, if not specified. We depict the 
absolute values of the correction factors 𝛼𝐀 and 𝛼𝑆 in (46) and (71), respectively, in order to better appreciate the order of magnitude 
and the location of the structure-preserving corrections. If not specified otherwise, we use the fourth order Runge-Kutta scheme for 
time integration (see Appendix B).

4.1. Numerical convergence studies

The accuracy of the new HGTC schemes is verified on the isentropic vortex problem forwarded in [37]. The computational domain 
is the square Ω = [0; 10]2 with periodic boundaries, and the generic radial position is 𝑟 =

√
(𝑥1 − 5)2 + (𝑥2 − 5)2. The parameters of 

the model are such that an ideal inviscid fluid is retrieved, hence we set 𝑐𝑠 = 𝑐ℎ = 0, and the initial condition is prescribed in terms 
of some perturbations that are superimposed on a background constant state:

𝜌(𝑡 = 0,𝐱) = (1 + 𝛿𝑇 )
1

𝛾−1 , 𝐯(𝑡 = 0,𝐱) = 𝟎, 𝑝(𝑡 = 0,𝐱) = (1 + 𝛿𝑇 )
𝛾

𝛾−1 , (96)

with the perturbations for temperature 𝛿𝑇 given with 𝛽 = 5 by

𝛿𝑇 = −(𝛾 − 1)𝛽2

8𝛾𝜋2
𝑒1−𝑟

2
. (97)

The simulation is carried out until the final time 𝑡𝑓 = 0.25 on a sequence of successively refined Voronoi meshes, and the errors are 
measured in 𝐿2 norms and reported in Table 1, showing that the formal order of accuracy is retrieved. No numerical dissipation is 
added to the scheme because the flow does not exhibit any discontinuity, thus 𝜆𝓁r = 0 in (41).

We also use this test case to analyze the time convergence which ultimately affects the preservation of the determinant and the 
entropy compatibility. Therefore we measure the errors of the total mass and entropy conservation according to (94) while running 
this simulation until the time 𝑡𝑓 = 1 on one single unstructured mesh with characteristic size of ℎ = 1∕3. Three different Runge-Kutta 
time integrators are used of order 𝑁 = {1, 2, 4} (see Appendix B), and the results are collected in Table 2. We observe that the 
convergence rates for the entropy conservation exhibit order of accuracy O(𝑁 + 1), and convergence of order O(𝑁 + 2) is achieved 
for the total mass conservation. The time evolution of the mass and entropy conservation errors is plotted in Fig. 3, where we also 
show the map of the scalar correction factors 𝛼𝐀 and 𝛼𝑆 at the final time.

Furthermore, in order to make evidence of the semi-discrete preservation of the structural properties of the new schemes, in Fig. 4
we show the time evolution of the right hand side of our scheme for different Runge-Kutta time integrators. The right hand side is 
given by the dot product between the dual variables 𝐫 and the numerical fluxes, the non-conservative products and the source terms. 
This ultimately leads to the time derivative of the entropy variable, i.e. 𝜕S∕𝜕𝑡. We can notice that, as proven in Theorem 2, this term 
is zero up to machine accuracy independently of the time integration scheme, which confirms that the spatial discretization is indeed 
16

structure preserving up machine accuracy.
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Table 2

Time convergence study related to total mass and entropy 
conservation for the isentropic vortex problem at time 𝑡𝑓 = 1
with three different Runge-Kutta time integration schemes on 
a mesh with size ℎ = 1∕3. The errors are measured in the 𝐿∞
norm and refer to the geometric thermodynamic errors given 
by (94).

Runge-Kutta O(1)
Δ𝑡 𝛿𝐴 𝛿𝑆
8.00E-03 5.1415E-05 - 2.2516E-02 -
4.00E-03 1.2874E-05 2.00 1.1238E-02 1.00
2.00E-03 3.2211E-06 2.00 5.6138E-03 1.00

Runge-Kutta O(2)
Δ𝑡 𝛿𝐴 𝛿𝑆
8.00E-03 3.3043E-09 - 1.3195E-06 -
4.00E-03 3.3385E-10 3.31 2.5736E-07 2.36
2.00E-03 3.6793E-11 3.18 5.5271E-08 2.22

Runge-Kutta O(4)
Δ𝑡 𝛿𝐀 𝛿𝑆
8.00E-03 2.9510E-13 - 6.6099E-11 -
4.00E-03 9.1038E-15 5.02 4.1208E-12 4.00
2.00E-03 2.8818E-16 4.98 2.5709E-13 4.00

Fig. 3. Isentropic vortex problem at time 𝑡𝑓 = 0.25. Top: map of the geometric correction factor |𝛼𝐀| (left) and of the thermodynamic correction factor |𝛼𝑆 | (right) 
with mesh size ℎ = 1∕6. Bottom: time evolution of the mass (left) and entropy (right) conservation errors for Runge-Kutta time integration schemes of order 1 (black 
17

square), 2 (red triangle) and 4 (blue diamond). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 4. Isentropic vortex problem. Time evolution of the right hand side of the scheme 𝐫 ⋅ 𝜕𝐮∕𝜕𝑡 = 𝜕S∕𝜕𝑡 for Runge-Kutta time integration schemes of order 1 (left), 2 
(middle) and 4 (right).

Table 3

Initialization of Riemann problems. Initial states left (L) and right (R) are reported as well as the final time of the 
simulation 𝑡𝑓 and the position of the initial discontinuity 𝑥𝑑 .

Name 𝑡𝑓 𝑥𝑑 𝜌𝐿 𝑣1,𝐿 𝑣2,𝐿 𝑝𝐿 𝜌𝑅 𝑣1,𝑅 𝑣2,𝑅 𝑝𝑅
RP1 0.035 -0.2 5.99924 19.5975 0.0 460.894 5.99924 -6.19633 0.0 46.095
RP2 0.15 0.0 1.0 -2.0 0.0 0.4 1.0 2.0 0.0 0.4
RP3 0.20 0.0 1.0 0.0 -0.2 1.0 0.5 0.0 0.2 0.5

Fig. 5. Riemann problem RP1 at final time 𝑡𝑓 = 0.035. Comparison of density, horizontal velocity and pressure against the reference solution extracted with a 
one-dimensional cut of 200 equidistant points along the 𝑥-direction at 𝑦 = 0.

4.2. Riemann problems

The novel HGTC scheme is here validated against three one-dimensional Riemann problems taken from [57,2]. The computational 
domain is the rectangular box Ω = [−0.5; 0.5] ×[−0.05; 0.05] with periodic boundaries in the 𝑦−direction and transmissive boundaries 
along the 𝑥−direction. The computational mesh is unstructured made of polygons and it has a characteristic size of ℎ = 1∕4096 and 
all the simulations are run in 2D, thus the properties of symmetry preservation of the numerical solution are verified as well. 
Indeed, despite the one-dimensional setting of the Riemann problems, these test cases become fully multidimensional in the case of 
unstructured Voronoi meshes, where no mesh edges are in principle aligned with the flow. The initial condition is given in terms of 
a left and a right state separated at position 𝑥 = 𝑥𝑑 . Table 3 summarizes the setup of the three Riemann problems considered here.

The first two Riemann problems RP1 and RP2 involve the Euler equations for compressible gas dynamics (i.e. 𝑐𝑠 = 𝑐ℎ = 0), and 
the reference solution is computed with the exact Riemann solver detailed in [57]. The last Riemann problem is concerned with 
the full model (1) and we set 𝜇 = 𝜅 = 10−5, so that the stiff relaxation limit of the model is retrieved and numerically assessed. The 
reference solution is obtained numerically using a second order TVD finite volume method on a very fine mesh of 100000 control 
volumes. The results are collected in Figs. 5-7, showing a good agreement with the reference solution in all cases. To appreciate that 
the one-dimensional symmetry of the solution is well preserved, we show in Fig. 8 a three-dimensional view of the solution for the 
three Riemann problems considered here.

4.3. Circular explosion problem

We consider a cylindrical explosion problem to test the HGTC schemes with numerical dissipation, which is here activated 
since the solution exhibits an outward traveling shock wave. The computational domain is given by Ω = [−1; 1]2 with transmissive 
18

boundaries, and the fluid is initially assigned as follows:
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Fig. 6. Riemann problem RP2 at final time 𝑡𝑓 = 0.15. Comparison of density, horizontal velocity and temperature against the reference solution extracted with a 
one-dimensional cut of 200 equidistant points along the 𝑥-direction at 𝑦 = 0.

Fig. 7. Riemann problem RP3 at final time 𝑡𝑓 = 0.2. Comparison of density, vertical velocity and pressure against the reference solution for the compressible Euler 
equations extracted with a one-dimensional cut of 200 equidistant points along the 𝑥-direction at 𝑦 = 0.

Fig. 8. Three-dimensional view of density for RP1 (left), horizontal velocity for RP2 (middle) and density for RP3 (right) at their corresponding final times.

(𝜌, 𝑣1, 𝑣2, 𝑣3, 𝑝) =
{

(1, 0, 0, 0, 1) 𝑟 < 𝑅

(0.125, 0, 0, 0, 0.1) 𝑟 ≥𝑅
, 𝑡 = 0, 𝐱 ∈Ω, (98)

where 𝑅 = 0.5 denotes the radius of the initial discontinuity and 𝑟 =
√
𝑥21 + 𝑥22 represents the generic radial coordinate. An inviscid 

fluid is considered by setting 𝑐𝑠 = 𝑐ℎ = 0 and the final time of the simulation is chosen to be 𝑡𝑓 = 0.25. We run this test on three 
different Voronoi meshes with characteristic mesh size of ℎ = 1∕256, ℎ = 1∕128 and ℎ = 1∕64. The numerical results are compared 
against the reference solution that has been computed by solving the compressible Euler equations with geometric sources [57]
employing a classical second order TVD finite volume scheme on a very fine mesh composed of 20000 cells. An overall very good 
agreement can be observed in Fig. 9, that numerically confirms the convergence of the new HGTC schemes as the mesh resolution 
gets finer. Fig. 10 depicts a map of the correction factor 𝛼𝐀 as well as the time evolution of the total mass conservation errors for all 
the simulations. The solution preserves an excellent cylindrical symmetry despite the unstructured nature of the mesh, as shown by 
the three-dimensional density distribution plotted in Fig. 10. Furthermore, we notice that the highest correction for the preservation 
of the determinant constraint occurs across the contact wave.

To strongly test the preservation of the symmetry of the numerical solution, we also run the explosion problem on three coarse 
meshes with mesh size ℎ𝑐 = 1∕4, ℎ𝑐 = 1∕8 and ℎ𝑐 = 1∕16, respectively. Fig. 11 plots the density distribution at 𝑡𝑓 = 0.2 together with 
19

the computational mesh. Only for the extremely coarse mesh ℎ𝑐 = 1∕4, we can see some mesh imprinting, which is nevertheless very 
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Fig. 9. Explosion problem at time 𝑡𝑓 = 0.25. Numerical results for density, horizontal velocity, pressure and temperature (from top left to bottom right) compared 
against the reference solution extracted with a one-dimensional cut of 200 equidistant points along the 𝑥-direction at 𝑦 = 0. Mesh convergence analysis with 
characteristic mesh size ℎ = 1∕256 (red line), ℎ = 1∕128 (red line) and ℎ = 1∕64 (green line).

mild, while the other meshes exhibit an excellent symmetry of the numerical solution despite their resolution. This can be indeed 
appreciated already for the mesh with ℎ𝑐 = 1∕8. Let us remark that the computational grids always contain some elements that are 
quite unstructured, meaning that no cylindrical symmetry is present a priori.

4.4. Viscous shock profile

Next, we model compressible heat-conducting viscous flows by setting 𝑐𝑠 = 𝑐ℎ = 10, 𝜇 = 2 ⋅ 10−2 and 𝜅 = 9.3333 ⋅ 10−2. The 
computational domain is the channel Ω = [0; 1] × [0; 0.2] that is paved with Voronoi polygons of characteristic size of ℎ = 1∕1024. 
Periodic boundaries are imposed in 𝑦−direction, while a constant inflow velocity is prescribed for 𝑥 = 0 and outflow boundary 
conditions are set at 𝑥 = 1. In [5], an exact solution of the one-dimensional compressible Navier-Stokes equations is derived for 
Prandtl number Pr = 0.75 and constant viscosity that involves a stationary viscous shock wave at a shock Mach number 𝑀𝑠. The 
Reynolds number is Re𝑠 = 𝜌0𝑐0𝑀𝑠𝐿𝜇

−1, with the reference length that is assumed to be 𝐿 = 1. This is an interesting test case 
since all the terms characteristics of the one-dimensional compressible Navier-Stokes equations can be verified, including viscous 
stress and heat conduction. According to [5], the exact solution is given in terms of dimensionless density, pressure and velocity. 
The dimensionless velocity �̄� = 𝑣

𝑀𝑠 𝑐0
is related to the stationary shock wave, which can be determined as the root of the following 
20

equation:
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Fig. 10. Explosion problem at time 𝑡𝑓 = 0.25. Left: three-dimensional view of the density distribution with the map of the correction factor 𝛼𝐀 for the results obtained 
with ℎ = 1∕256. Right: time evolution of the mass conservation errors for ℎ = 1∕256 (red line), ℎ = 1∕128 (blue line) and ℎ = 1∕64 (green line).

Fig. 11. Explosion problem at time 𝑡𝑓 = 0.2. Density distribution and mesh configuration for ℎ𝑐 = 1∕4 (left), ℎ𝑐 = 1∕8 (middle) and ℎ𝑐 = 1∕16 (right).

|�̄�− 1||�̄�− 𝜆2|𝜆2 =
||||1 − 𝜆2

2
||||
(1−𝜆2)

exp

(
3
4

Re𝑠
𝑀2

𝑠 − 1
𝛾𝑀2

𝑠

𝑥

)
, (99)

with

𝜆2 =
1 + 𝛾−1

2 𝑀2
𝑠

𝛾+1
2 𝑀2

𝑠

. (100)

Once the solution of equation (99) is computed, the dimensionless velocity �̄� is expressed as a function of 𝑥. The form of the viscous 
profile of the dimensionless pressure �̄� = 𝑝−𝑝0

𝜌0𝑐
2
0𝑀

2
𝑠

is given by the relation

�̄� = 1 − �̄�+ 1
2𝛾

𝛾 + 1
𝛾 − 1

(�̄�− 1)
�̄�

(�̄�− 𝜆2). (101)

Finally, the profile of the dimensionless density �̄� = 𝜌

𝜌0
is derived from the integrated continuity equation: �̄��̄� = 1. Here, we make 

the simulation unsteady by adding a constant velocity background field 𝑣 =𝑀𝑠𝑐0. The initial condition is given by a shock wave 
centered at 𝑥 = 0.25 which is propagating at Mach 𝑀𝑠 = 2 with Re𝑠 = 100. The upstream shock state is defined by

𝜌(𝑡 = 0,𝐱) = 𝜌0, 𝐯(𝑡 = 0,𝐱) = 𝟎, 𝑝0(𝑡 = 0,𝐱) = 1∕𝛾, (102)

with 𝑐0 = 1. The numerical solution obtained with the HGTC schemes without numerical dissipation at the final time 𝑡𝑓 = 0.2 is 
compared against the reference solution of the one-dimensional compressible Navier-Stokes equations. The numerical solutions for 
the main primitive variables are plotted in Fig. 12. An excellent agreement is obtained, demonstrating the capability of the HGTC 
schemes of retrieving the correct physical solution for heat-conducting viscous fluids.

We also plot the correction factor 𝛼𝐀 in Fig. 13 as well as the time evolution of the total mass conservation errors 𝛿𝐀 for the 
21

simulations run with and without numerical dissipation. In both cases, the 𝐿∞ determinant error remains at machine accuracy.
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Fig. 12. Viscous shock problem at time 𝑡𝑓 = 0.2. Numerical results for density, horizontal velocity, pressure and heat flux extracted with a one-dimensional cut of 200 
equidistant points along the 𝑥-direction at 𝑦 = 0.1 compared against the reference solution.

Fig. 13. Viscous shock problem at time 𝑡𝑓 = 0.2. Map of the thermodynamic correction factor |𝛼𝐀| with a three-dimensional view of the density distribution (left) and 
22

time evolution of the mass conservation errors for the HGTC with and without viscous terms (right).
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Fig. 14. 2D Taylor-Green vortex at time 𝑡𝑓 = 0.2 with viscosity 𝜇 = 10−2 . Top: one-dimensional cut of 200 equidistant points along the 𝑥-axis and the 𝑦−axis for the 
velocity components 𝑣1 and 𝑣2 (left) and for the pressure 𝑝 (right). Bottom: distribution of the velocity magnitude with stream-traces (left) and time evolution of the 
mass and entropy conservation errors for the HGTC scheme.

4.5. 2D Taylor-Green vortex

The two-dimensional Taylor-Green vortex problem is a well-known test case for the incompressible Navier-Stokes equations. The 
exact solution writes

𝑢(𝑡,𝐱) = sin(𝑥1) cos(𝑥2) 𝑒−2𝜈𝑡,

𝑣(𝑡,𝐱) = −cos(𝑥1) sin(𝑥2) 𝑒−2𝜈𝑡,

𝑝(𝑡,𝐱) = 𝐶 + 1
4
(cos(2𝑥1) + cos(2𝑥2)) 𝑒−4𝜈𝑡, (103)

where 𝜈 = 𝜇∕𝜌 denotes the kinematic viscosity of the fluid and the density is 𝜌(𝑡, 𝐱) = 1. To model an incompressible viscous fluid, 
we set 𝑐𝑠 = 10 and 𝜇 = 10−2, and the additive constant to the pressure is chosen to be 𝐶 = 100∕𝛾 so that a maximum Mach number 
of 0.1 is retrieved. Heat conduction is neglected, thus we set 𝑐ℎ = 0. The initial condition is provided by the exact solution (103) at 
time 𝑡 = 0. The computational domain is given by Ω = [0; 2𝜋]2 with periodic boundary conditions everywhere, and it is paved with 
a Voronoi grid of characteristic mesh size ℎ = 2𝜋∕200. As studied in [54], for long time simulations the flow becomes turbulent, 
thus we set the final time to 𝑡𝑓 = 0.2 as typically done in the literature [21,8,12]. Fig. 14 depicts the numerical results at the final 
time of the simulation that are compared against the reference solution, obtaining an excellent matching. Furthermore, we also show 
the time evolution of the mass and entropy conservation errors, that remain bounded and preserved thanks to the compatibility 
23

corrections of our novel HGTC schemes.
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Fig. 15. Solid rotor problem at time 𝑡𝑓 = 0.3. Top: numerical results for the horizontal velocity 𝑣1 with ℎ = 1∕128 (left) and ℎ = 1∕256 (right). Bottom: numerical 
results for the thermal impulse component 𝐽1 with ℎ = 1∕128 (left) and ℎ = 1∕256 (right).

4.6. Solid rotor problem

Finally, a test case for solid mechanics is solved, namely the solid rotor problem introduced in [47,8]. The relaxation times of 
the mathematical model are set to 𝜏1 = 𝜏2 = 1020, hence nonlinear hyperelastic solids are genuinely modeled by the governing PDE 
presented in [49]. We fix 𝑐𝑠 = 𝑐ℎ = 1 and the final time of the simulation is 𝑡𝑓 = 0.3. The computational domain is Ω = [−1; 1]2 with 
periodic boundaries, and the initial condition of the material writes

(𝜌, 𝑣1, 𝑣2, 𝑣3, 𝑝) =
{

(1, −𝑥2∕𝑅, 𝑥1∕𝑅, 0,1) 𝑟 < 𝑅

(1, 0, 0, 0, 1) 𝑟 ≥𝑅
, 𝑡 = 0, 𝐱 ∈Ω, (104)

with the initial discontinuity located at 𝑅 = 0.2 and 𝑟 =
√
𝑥21 + 𝑥22. To show mesh convergence, we run the solid rotor problem on 

two different meshes with characteristic size of ℎ = 1∕256 and ℎ = 1∕128. The results are compared with each other in Fig. 15, where 
the horizontal velocity distribution is plotted. The maps of the scalar correction factors 𝛼𝐀 and 𝛼𝑆 at the final time level are also 
depicted in Fig. 16. We observe that both corrections may act at the same spatial locations without negatively interfering between 
each other.

5. Conclusions

In this paper we have presented a novel finite volume scheme on unstructured Voronoi meshes for the solution of a reduced 
unified model for continuum mechanics, where the mass conservation equation is discarded. This has been achieved enforcing the 
compatibility of the new schemes with the Geometric Conservation Law that links the distortion tensor to the density within each 
24

control volume. The geometric compatibility is obtained by introducing a new generalized concept of potential, that is assumed 
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Fig. 16. Solid rotor problem at time 𝑡𝑓 = 0.3. Map of the geometric correction factor |𝛼𝐀| (left) and of the thermodynamic correction factor |𝛼𝑆 | (right) obtained with 
a characteristic mesh size of ℎ = 1∕512.

to be the determinant of the distortion tensor. Consequently, a set of associated pseudo-dual variables is retrieved, which play the 
role of the thermodynamic variables for the total energy potential. By means of a conservative correction directly embedded in 
the numerical fluxes, the novel schemes are proven to be compliant with the GCL at the semi-discrete level. Once the geometric 
compatibility is achieved, thermodynamic compatibility is also guaranteed using the same strategy that derives from the formalism 
of symmetric and hyperbolic thermodynamically compatible (SHTC) systems introduced by Godunov in 1961. These two corrections 
can coexist at the discrete level and they do not interfere with each other, hence making it possible for the first time on unstructured 
fixed grids to ensure geometric and thermodynamic compatibility at the same time. Two theorems demonstrate that these properties 
are respected at the semi-discrete level. A two-dimensional first order finite volume scheme with up to fourth order Runge-Kutta 
time integrators has been implemented and tested. A large suite of test cases is shown to numerically assess the structure preserving 
properties of the new schemes.

In the future we plan to exploit this strategy to tackle other types of constraints, namely involution-constraints like the solenoidal 
property of the magnetic field in magnetohydrodynamics or the irrotational behavior of the deformation gradient and the thermal 
impulse vector in reversible processes in solid mechanics. Finally, the extension of the proposed approach to high order discontinuous 
Galerkin schemes is also foreseen as well as the development of implicit-explicit [11,8] asymptotic preserving discretizations to make 
the numerical schemes consistent with the Navier-Stokes-Fourier limit exhibited by the governing equations.
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Appendix A. Geometric conservation law derived from the determinant potential

In this appendix we show that the pseudo-Gibbs relation (26) holds true. The starting point is the evolution equation of the 
distortion tensor 𝐀 = {𝐴𝑖𝑘}, in which the viscous terms are neglected. Let us explicitly compute the dual variables 𝐰 of the potential |𝐀|:

𝐰 ∶= {𝑤𝑖𝑘} = 𝜕𝐴𝑖𝑘 |𝐀| =
⎛⎜⎜⎜⎝

𝐴22𝐴33 −𝐴23𝐴32 −𝐴21𝐴33 +𝐴23𝐴31 𝐴21𝐴32 −𝐴22𝐴31

−𝐴12𝐴33 +𝐴13𝐴32 𝐴11𝐴33 −𝐴13𝐴31 −𝐴11𝐴32 +𝐴12𝐴31

𝐴12𝐴23 −𝐴13𝐴22 −𝐴11𝐴23 +𝐴13𝐴21 𝐴11𝐴22 −𝐴12𝐴21

⎞⎟⎟⎟⎠ . (A.1)

The determinant of the distortion tensor 𝐀 is explicitly given by

|𝐀| =𝐴11𝐴22𝐴33 −𝐴11𝐴23𝐴32 −𝐴12𝐴21𝐴33 +𝐴12𝐴23𝐴31 +𝐴13𝐴21𝐴32 −𝐴13𝐴22𝐴31. (A.2)

Firstly, we investigate the compatibility with the source terms which are present in the equations (30c). The source terms 
𝐒𝐀 = {𝑆𝐀,𝑖𝑘} are given by

𝑆𝐀,𝑖𝑘 = − 3
𝜏1

|𝐀| 53 𝐴𝑖𝑚 �̊�𝑚𝑘, �̊�𝑚𝑘 =𝐺𝑚𝑘 −
1
3
𝐺𝑗𝑗𝛿𝑚𝑘, 𝐺𝑚𝑘 =𝐴𝑗𝑚𝐴𝑗𝑘. (A.3)

Multiplication of the source terms with the dual variables yields the contributions {�̃�𝐀,𝑖𝑘} = {𝑤𝑖𝑘 𝑆𝐀,𝑖𝑘}, which write

�̃�𝐀,11 = −
(−2𝐴3

11+(−2𝐴
2
12−2𝐴

2
13−2𝐴

2
21+𝐴

2
22+𝐴

2
23−2𝐴

2
31+𝐴

2
32+𝐴

2
33)𝐴11+(−3𝐴21𝐴22−3𝐴31𝐴32)𝐴12−3𝐴13(𝐴21𝐴23+𝐴31𝐴33))(−𝐴22𝐴33+𝐴23𝐴32)|𝐀| 53

𝜏1
,

�̃�𝐀,12 =
2(𝐴3

12+(𝐴
2
32−

𝐴233
2 +𝐴2

11+𝐴
2
13−

𝐴221
2 +𝐴2

22−
𝐴223
2 −

𝐴231
2 )𝐴12+(

3𝐴31𝐴32
2 + 3𝐴21𝐴22

2 )𝐴11+
3𝐴13(𝐴22𝐴23+𝐴32𝐴33)

2 )(𝐴21𝐴33−𝐴23𝐴31)|𝐀| 53
𝜏1

,

�̃�𝐀,13 =
(−2𝐴3

13+(−2𝐴
2
11−2𝐴

2
12+𝐴

2
21+𝐴

2
22−2𝐴

2
23+𝐴

2
31+𝐴

2
32−2𝐴

2
33)𝐴13+(−3𝐴21𝐴23−3𝐴31𝐴33)𝐴11−3𝐴12(𝐴22𝐴23+𝐴32𝐴33))(𝐴21𝐴32−𝐴22𝐴31)|𝐀| 53

𝜏1
,

�̃�𝐀,21 =
(−2𝐴3

21+(−2𝐴
2
11+𝐴

2
12+𝐴

2
13−2𝐴

2
22−2𝐴

2
23−2𝐴

2
31+𝐴

2
32+𝐴

2
33)𝐴21+(−3𝐴12𝐴22−3𝐴13𝐴23)𝐴11−3𝐴31(𝐴22𝐴32+𝐴23𝐴33))(−𝐴12𝐴33+𝐴13𝐴32)|𝐀| 53

𝜏1
,

�̃�𝐀,22 = −
2(𝐴11𝐴33−𝐴13𝐴31)(𝐴3

22+(𝐴
2
32−

𝐴233
2 −

𝐴211
2 +𝐴2

12−
𝐴213
2 +𝐴2

21+𝐴
2
23−

𝐴231
2 )𝐴22+

3𝐴11𝐴12𝐴21
2 + 3𝐴12𝐴13𝐴23

2 + 3𝐴32(𝐴21𝐴31+𝐴23𝐴33)
2 )|𝐀| 53

𝜏1
,

�̃�𝐀,23 = −
(𝐴11𝐴32−𝐴12𝐴31)(−2𝐴3

23+(𝐴
2
11+𝐴

2
12−2𝐴

2
13−2𝐴

2
21−2𝐴

2
22+𝐴

2
31+𝐴

2
32−2𝐴

2
33)𝐴23−3𝐴11𝐴13𝐴21−3𝐴12𝐴13𝐴22−3𝐴33(𝐴21𝐴31+𝐴22𝐴32))|𝐀| 53

𝜏1
,

�̃�𝐀,31 = −
2(𝐴12𝐴23−𝐴13𝐴22)(𝐴3

31+(𝐴
2
32+𝐴

2
33+𝐴

2
11−

𝐴212
2 −

𝐴213
2 +𝐴2

21−
𝐴222
2 −

𝐴223
2 )𝐴31+(

3𝐴32𝐴12
2 + 3𝐴33𝐴13

2 )𝐴11+
3𝐴21(𝐴22𝐴32+𝐴23𝐴33)

2 )|𝐀| 53
𝜏1

,

�̃�𝐀,32 =
2(𝐴3

32+(𝐴
2
33−

𝐴211
2 +𝐴2

12−
𝐴213
2 −

𝐴221
2 +𝐴2

22−
𝐴223
2 +𝐴2

31)𝐴32+
3𝐴11𝐴12𝐴31

2 + 3𝐴12𝐴13𝐴33
2 + 3𝐴22(𝐴21𝐴31+𝐴23𝐴33)

2 )(𝐴11𝐴23−𝐴13𝐴21)|𝐀| 53
𝜏1

,

�̃�𝐀,33 = −
2
(
𝐴11𝐴22−𝐴12𝐴21

)(
𝐴3
33+

(
𝐴2
32−

𝐴211
2 −

𝐴212
2 +𝐴2

13−
𝐴221
2 −

𝐴222
2 +𝐴2

23+𝐴
2
31

)
𝐴33+

3𝐴11𝐴13𝐴31
2 + 3𝐴12𝐴13𝐴32

2 + 3𝐴23
(
𝐴21𝐴31+𝐴22𝐴32

)
2

)|𝐀| 53
𝜏1

.

(A.4)

At the aid of a linear algebra software [45], by summing up all the above terms, i.e. dot multiplying the source terms with the dual 
variables, one obtains

�̃�𝐀,𝑖𝑘 = −𝑤𝑖𝑘 ⋅
𝛼𝑖𝑘
𝜃(𝜏1)

= 0. (A.5)

Thus, we retrieve no source on the right hand side of the GCL (25) as expected.
Next, the compatibility with the flux and non-conservative terms on the left hand side of (1d) has to be verified. To that aim, the 

equation of the distortion tensor as well as the GCL are written in fully non-conservative form as follows:

𝜕𝐴𝑖𝑘

𝜕𝑡
+𝐴𝑖𝑚

𝜕𝑣𝑚
𝜕𝑥𝑘

+ 𝑣𝑚
𝜕𝐴𝑖𝑘

𝜕𝑥𝑚
= −

𝛼𝑖𝑘
𝜃1(𝜏1)

, (A.6)

𝜕|𝐀|
𝜕𝑡

+ |𝐀| 𝜕𝑣𝑘
𝜕𝑥𝑘

+ 𝑣𝑘 ⋅
𝜕|𝐀|
𝜕𝑥𝑘

= 0. (A.7)
26

The non-conservative terms in (A.6) for each component of the distortion tensor 𝐀, i.e. 𝐷𝑖𝑘 =𝐴𝑖𝑚
𝜕𝑣𝑚
𝜕𝑥𝑘

+ 𝑣𝑚
𝜕𝐴𝑖𝑘
𝜕𝑥𝑚

, are given by
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𝐃 = {𝐷𝑖𝑘} =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴11

(
𝜕𝑣1
𝜕𝑥1

)
+ 𝑣1

(
𝜕𝐴11
𝜕𝑥1

)
+𝐴12

(
𝜕𝑣2
𝜕𝑥1

)
+ 𝑣2

(
𝜕𝐴11
𝜕𝑥2

)
+𝐴13

(
𝜕𝑣3
𝜕𝑥1

)
+ 𝑣3

(
𝜕𝐴11
𝜕𝑥3

)
𝐴11

(
𝜕𝑣1
𝜕𝑥2

)
+ 𝑣1

(
𝜕𝐴12
𝜕𝑥1

)
+𝐴12

(
𝜕𝑣2
𝜕𝑥2

)
+ 𝑣2

(
𝜕𝐴12
𝜕𝑥2

)
+𝐴13

(
𝜕𝑣3
𝜕𝑥2

)
+ 𝑣3

(
𝜕𝐴12
𝜕𝑥3

)
𝐴11

(
𝜕𝑣1
𝜕𝑥3

)
+ 𝑣1

(
𝜕𝐴13
𝜕𝑥1

)
+𝐴12

(
𝜕𝑣2
𝜕𝑥3

)
+ 𝑣2

(
𝜕𝐴13
𝜕𝑥2

)
+𝐴13

(
𝜕𝑣3
𝜕𝑥3

)
+ 𝑣3

(
𝜕𝐴13
𝜕𝑥3

)
𝐴21

(
𝜕𝑣1
𝜕𝑥1

)
+ 𝑣1

(
𝜕𝐴21
𝜕𝑥1

)
+𝐴22

(
𝜕𝑣2
𝜕𝑥1

)
+ 𝑣2

(
𝜕𝐴21
𝜕𝑥2

)
+𝐴23

(
𝜕𝑣3
𝜕𝑥1

)
+ 𝑣3

(
𝜕𝐴21
𝜕𝑥3

)
𝐴21

(
𝜕𝑣1
𝜕𝑥2

)
+ 𝑣1

(
𝜕𝐴22
𝜕𝑥1

)
+𝐴22

(
𝜕𝑣2
𝜕𝑥2

)
+ 𝑣2

(
𝜕𝐴22
𝜕𝑥2

)
+𝐴23

(
𝜕𝑣3
𝜕𝑥2

)
+ 𝑣3

(
𝜕𝐴22
𝜕𝑥3

)
𝐴21

(
𝜕𝑣1
𝜕𝑥3

)
+ 𝑣1

(
𝜕𝐴23
𝜕𝑥1

)
+𝐴22

(
𝜕𝑣2
𝜕𝑥3

)
+ 𝑣2

(
𝜕𝐴23
𝜕𝑥2

)
+𝐴23

(
𝜕𝑣3
𝜕𝑥3

)
+ 𝑣3

(
𝜕𝐴23
𝜕𝑥3

)
𝐴31

(
𝜕𝑣1
𝜕𝑥1

)
+ 𝑣1

(
𝜕𝐴31
𝜕𝑥1

)
+𝐴32

(
𝜕𝑣2
𝜕𝑥1

)
+ 𝑣2

(
𝜕𝐴31
𝜕𝑥2

)
+𝐴33

(
𝜕𝑣3
𝜕𝑥1

)
+ 𝑣3

(
𝜕𝐴31
𝜕𝑥3

)
𝐴31

(
𝜕𝑣1
𝜕𝑥2

)
+ 𝑣1

(
𝜕𝐴32
𝜕𝑥1

)
+𝐴32

(
𝜕𝑣2
𝜕𝑥2

)
+ 𝑣2

(
𝜕𝐴32
𝜕𝑥2

)
+𝐴33

(
𝜕𝑣3
𝜕𝑥2

)
+ 𝑣3

(
𝜕𝐴32
𝜕𝑥3

)
𝐴31

(
𝜕𝑣1
𝜕𝑥3

)
+ 𝑣1

(
𝜕𝐴33
𝜕𝑥1

)
+𝐴32

(
𝜕𝑣2
𝜕𝑥3

)
+ 𝑣2

(
𝜕𝐴33
𝜕𝑥2

)
+𝐴33

(
𝜕𝑣3
𝜕𝑥3

)
+ 𝑣3

(
𝜕𝐴33
𝜕𝑥3

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.8)

Then, the product of the above terms with the dual variables leads to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑤11𝐷11

𝑤12𝐷12

𝑤13𝐷13

𝑤21𝐷21

𝑤22𝐷22

𝑤23𝐷23

𝑤31𝐷31

𝑤32𝐷32

𝑤33𝐷33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
𝐴22𝐴33 −𝐴23𝐴32

)(
𝐴11

(
𝜕𝑣1
𝜕𝑥1

)
+ 𝑣1

(
𝜕𝐴11
𝜕𝑥1

)
+𝐴12

(
𝜕𝑣2
𝜕𝑥1

)
+ 𝑣2

(
𝜕𝐴11
𝜕𝑥2

)
+𝐴13

(
𝜕𝑣3
𝜕𝑥1

)
+ 𝑣3

(
𝜕𝐴11
𝜕𝑥3

))
(
−𝐴21𝐴33 +𝐴23𝐴31

)(
𝐴11

(
𝜕𝑣1
𝜕𝑥2

)
+ 𝑣1

(
𝜕𝐴12
𝜕𝑥1

)
+𝐴12

(
𝜕𝑣2
𝜕𝑥2

)
+ 𝑣2

(
𝜕𝐴12
𝜕𝑥2

)
+𝐴13

(
𝜕𝑣3
𝜕𝑥2

)
+ 𝑣3

(
𝜕𝐴12
𝜕𝑥3

))
(
𝐴21𝐴32 −𝐴22𝐴31

)(
𝐴11

(
𝜕𝑣1
𝜕𝑥3

)
+ 𝑣1

(
𝜕𝐴13
𝜕𝑥1

)
+𝐴12

(
𝜕𝑣2
𝜕𝑥3

)
+ 𝑣2

(
𝜕𝐴13
𝜕𝑥2

)
+𝐴13

(
𝜕𝑣3
𝜕𝑥3

)
+ 𝑣3

(
𝜕𝐴13
𝜕𝑥3

))
(
−𝐴12𝐴33 +𝐴13𝐴32

)(
𝐴21

(
𝜕𝑣1
𝜕𝑥1

)
+ 𝑣1

(
𝜕𝐴21
𝜕𝑥1

)
+𝐴22

(
𝜕𝑣2
𝜕𝑥1

)
+ 𝑣2

(
𝜕𝐴21
𝜕𝑥2

)
+𝐴23

(
𝜕𝑣3
𝜕𝑥1

)
+ 𝑣3

(
𝜕𝐴21
𝜕𝑥3

))
(
𝐴11𝐴33 −𝐴13𝐴31

)(
𝐴21

(
𝜕𝑣1
𝜕𝑥2

)
+ 𝑣1

(
𝜕𝐴22
𝜕𝑥1

)
+𝐴22

(
𝜕𝑣2
𝜕𝑥2

)
+ 𝑣2

(
𝜕𝐴22
𝜕𝑥2

)
+𝐴23

(
𝜕𝑣3
𝜕𝑥2

)
+ 𝑣3

(
𝜕𝐴22
𝜕𝑥3

))
(
−𝐴11𝐴32 +𝐴12𝐴31

)(
𝐴21

(
𝜕𝑣1
𝜕𝑥3

)
+ 𝑣1

(
𝜕𝐴23
𝜕𝑥1

)
+𝐴22

(
𝜕𝑣2
𝜕𝑥3

)
+ 𝑣2

(
𝜕𝐴23
𝜕𝑥2

)
+𝐴23

(
𝜕𝑣3
𝜕𝑥3

)
+ 𝑣3

(
𝜕𝐴23
𝜕𝑥3

))
(
𝐴12𝐴23 −𝐴13𝐴22

)(
𝐴31

(
𝜕𝑣1
𝜕𝑥1

)
+ 𝑣1

(
𝜕𝐴31
𝜕𝑥1

)
+𝐴32

(
𝜕𝑣2
𝜕𝑥1

)
+ 𝑣2

(
𝜕𝐴31
𝜕𝑥2

)
+𝐴33

(
𝜕𝑣3
𝜕𝑥1

)
+ 𝑣3

(
𝜕𝐴31
𝜕𝑥3

))
(
−𝐴11𝐴23 +𝐴13𝐴21

)(
𝐴31

(
𝜕𝑣1
𝜕𝑥2

)
+ 𝑣1

(
𝜕𝐴32
𝜕𝑥1

)
+𝐴32

(
𝜕𝑣2
𝜕𝑥2

)
+ 𝑣2

(
𝜕𝐴32
𝜕𝑥2

)
+𝐴33

(
𝜕𝑣3
𝜕𝑥2

)
+ 𝑣3

(
𝜕𝐴32
𝜕𝑥3

))
(
𝐴11𝐴22 −𝐴12𝐴21

)(
𝐴31

(
𝜕𝑣1
𝜕𝑥3

)
+ 𝑣1

(
𝜕𝐴33
𝜕𝑥1

)
+𝐴32

(
𝜕𝑣2
𝜕𝑥3

)
+ 𝑣2

(
𝜕𝐴33
𝜕𝑥2

)
+𝐴33

(
𝜕𝑣3
𝜕𝑥3

)
+ 𝑣3

(
𝜕𝐴33
𝜕𝑥3

))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.9)

On the other side, the non-conservative products in (A.7) explicitly write

|𝐀| 𝜕𝑣𝑘
𝜕𝑥𝑘

=
(
𝐴11𝐴22𝐴33 −𝐴11𝐴23𝐴32 −𝐴12𝐴21𝐴33 +𝐴12𝐴23𝐴31 +𝐴13𝐴21𝐴32 −𝐴13𝐴22𝐴31

)( 𝜕𝑣1
𝜕𝑥1

+
𝜕𝑣2
𝜕𝑥2

+
𝜕𝑣3
𝜕𝑥3

)
(A.10)

𝑣1
𝜕|𝐀|
𝜕𝑥1

= 𝑣1

(
𝐴22𝐴33

(
𝜕𝐴11
𝜕𝑥1

)
+𝐴11𝐴22

(
𝜕𝐴33
𝜕𝑥1

)
+𝐴11𝐴33

(
𝜕𝐴22
𝜕𝑥1

)
−𝐴23𝐴32

(
𝜕𝐴11
𝜕𝑥1

)
−𝐴11𝐴23

(
𝜕𝐴32
𝜕𝑥1

)
−𝐴11𝐴32

(
𝜕𝐴23
𝜕𝑥1

)
−𝐴21𝐴33

(
𝜕𝐴12
𝜕𝑥1

)
−𝐴12𝐴21

(
𝜕𝐴33
𝜕𝑥1

)
−𝐴12𝐴33

(
𝜕𝐴21
𝜕𝑥1

)
+𝐴23𝐴31

(
𝜕𝐴12
𝜕𝑥1

)
+𝐴12𝐴23

(
𝜕𝐴31
𝜕𝑥1

)
+𝐴12𝐴31

(
𝜕𝐴23
𝜕𝑥1

)
+𝐴21𝐴32

(
𝜕𝐴13
𝜕𝑥1

)
+𝐴13𝐴21

(
𝜕𝐴32
𝜕𝑥1

)
+𝐴13𝐴32

(
𝜕𝐴21
𝜕𝑥1

)
−𝐴22𝐴31

(
𝜕𝐴13
𝜕𝑥1

)
− 𝐴13𝐴22

(
𝜕𝐴31
𝜕𝑥1

)
−𝐴13𝐴31

(
𝜕𝐴22
𝜕𝑥1

))
(A.11)

𝑣2
𝜕|𝐀|
𝜕𝑥2

= 𝑣2

(
𝐴22𝐴33

(
𝜕𝐴11
𝜕𝑥2

)
+𝐴11𝐴22

(
𝜕𝐴33
𝜕𝑥2

)
+𝐴11𝐴33

(
𝜕𝐴22
𝜕𝑥2

)
−𝐴23𝐴32

(
𝜕𝐴11
𝜕𝑥2

)
−𝐴11𝐴23

(
𝜕𝐴32
𝜕𝑥2

)
−𝐴11𝐴32

(
𝜕𝐴23
𝜕𝑥2

)
−𝐴21𝐴33

(
𝜕𝐴12
𝜕𝑥2

)
−𝐴12𝐴21

(
𝜕𝐴33
𝜕𝑥2

)
−𝐴12𝐴33

(
𝜕𝐴21
𝜕𝑥2

)
+𝐴23𝐴31

(
𝜕𝐴12
𝜕𝑥2

)
+𝐴12𝐴23

(
𝜕𝐴31
𝜕𝑥2

)
+𝐴12𝐴31

(
𝜕𝐴23
𝜕𝑥2

)
+𝐴21𝐴32

(
𝜕𝐴13
𝜕𝑥2

)
+𝐴13𝐴21

(
𝜕𝐴32
𝜕𝑥2

)
+𝐴13𝐴32

(
𝜕𝐴21
𝜕𝑥2

)
− 𝐴22𝐴31

(
𝜕𝐴13
𝜕𝑥2

)
−𝐴13𝐴22

(
𝜕𝐴31
𝜕𝑥2

)
−𝐴13𝐴31

(
𝜕𝐴22
𝜕𝑥2

))
(A.12)

𝜕|𝐀| ( (
𝜕𝐴11

) (
𝜕𝐴33

) (
𝜕𝐴22

) (
𝜕𝐴11

) (
𝜕𝐴32

)

27

𝑣3 𝜕𝑥3
= 𝑣3 𝐴22𝐴33 𝜕𝑥3

+𝐴11𝐴22 𝜕𝑥3
+𝐴11𝐴33 𝜕𝑥3

−𝐴23𝐴32 𝜕𝑥3
−𝐴11𝐴23 𝜕𝑥3
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Table B.4

Butcher tableau for Runge-Kutta explicit 
methods.

0
𝛼2 𝛽21
𝛼3 𝛽31 𝛽32
⋮ ⋮ ⋮ ⋱
𝛼𝑠 𝛽𝑠1 𝛽𝑠2 ... 𝛽𝑠(𝑠−1)

𝑐1 𝑐2 ... 𝑐𝑠−1 𝑐𝑠

−𝐴11𝐴32

(
𝜕𝐴23
𝜕𝑥3

)
−𝐴21𝐴33

(
𝜕𝐴12
𝜕𝑥3

)
−𝐴12𝐴21

(
𝜕𝐴33
𝜕𝑥3

)
−𝐴12𝐴33

(
𝜕𝐴21
𝜕𝑥3

)
+𝐴23𝐴31

(
𝜕𝐴12
𝜕𝑥3

)
+𝐴12𝐴23

(
𝜕𝐴31
𝜕𝑥3

)
+𝐴12𝐴31

(
𝜕𝐴23
𝜕𝑥3

)
+𝐴21𝐴32

(
𝜕𝐴13
𝜕𝑥3

)
+𝐴13𝐴21

(
𝜕𝐴32
𝜕𝑥3

)
+𝐴13𝐴32

(
𝜕𝐴21
𝜕𝑥3

)
− 𝐴22𝐴31

(
𝜕𝐴13
𝜕𝑥3

)
−𝐴13𝐴22

(
𝜕𝐴31
𝜕𝑥3

)
−𝐴13𝐴31

(
𝜕𝐴22
𝜕𝑥3

))
(A.13)

After some tedious algebraic manipulations, we arrive at the result

𝑤𝑖𝑘 ⋅𝐷𝑖𝑘 = |𝐀| 𝜕𝑣𝑘
𝜕𝑥𝑘

+ 𝑣𝑘
𝜕|𝐀|
𝜕𝑥𝑘

, (A.14)

(A.9) = (A.10)+ (A.11)+ (A.12)+ (A.13),

therefore the GCL (25) is retrieved as the dot product of the dual variables 𝐰 with the evolution equations of the distortion tensor 𝐀
given by (1d).

Appendix B. Runge-Kutta schemes

Runge-Kutta methods represent a quite popular technique to carry out time integration and they are based on the method of lines 
(MOL) approach. The governing equations can be written in semi-discrete form as

d𝐔
d𝑡

= Lℎ(𝐔), (B.1)

where Lℎ(𝐔) contains the spatial discretization of the numerical fluxes, non-conservative products and source terms. A generic 
Runge-Kutta scheme with a total number of 𝑠 sub-stages is described by a Butcher tableau of the form shown in Table B.4. The 
numerical solution is determined at the next time step as

𝐔𝑛+1 =𝐔𝑛 +Δ𝑡
𝑠∑
𝑖=1

𝑐𝑖 𝜅𝑖. (B.2)

The generic Runge-Kutta stage 𝜅𝑖 is evaluated at the intermediate time level 𝑡(𝑖) = 𝑡𝑛 + 𝛼𝑖Δ𝑡 by

𝜅𝑖 = Lℎ

(
𝐔𝑛
ℎ
+Δ𝑡

𝑖∑
𝑗=1

𝛽𝑖𝑗 𝜅𝑗

)
(B.3)

with 𝐔𝑛
ℎ

denoting the numerical solution at the current time level 𝑡𝑛. In this work we consider three different Runge-Kutta schemes:

• Euler method with accuracy O(1)

0 0
1

• Heun method with accuracy O(2)

0 0 0
1 1 0

1/2 1/2
• RK4 method with accuracy O(4)

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0
28

1/6 1/3 1/3 1/6
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